精英家教网 > 高中数学 > 题目详情
15.若tanα+$\frac{1}{tanα}$=$\frac{10}{3}$,α∈($\frac{π}{4}$,$\frac{π}{2}$),则sin(2α+$\frac{π}{4}$)+2cos$\frac{π}{4}$cos2α的值为0.

分析 由条件求得tanα的值,再利用同角三角函数的基本关系,二倍角公式化简所给的式子,求得结果.

解答 解:∵tanα+$\frac{1}{tanα}$=$\frac{10}{3}$,α∈($\frac{π}{4}$,$\frac{π}{2}$),∴tanα=3,或tanα=$\frac{1}{3}$ (舍去),
则sin(2α+$\frac{π}{4}$)+2cos$\frac{π}{4}$cos2α=sin2αcos$\frac{π}{4}$+cos2αsin$\frac{π}{4}$+$\sqrt{2}$•$\frac{1+cos2α}{2}$ 
=$\frac{\sqrt{2}}{2}$sin2α+$\sqrt{2}$cos2α+$\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}}{2}$•$\frac{2sinαcosα}{{sin}^{2}α{+cos}^{2}α}$+$\sqrt{2}$•$\frac{{cos}^{2}α{-sin}^{2}α}{{sin}^{2}α{+cos}^{2}α}$+$\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}}{2}$•$\frac{2tanα}{{tan}^{2}α+1}$+$\sqrt{2}$•$\frac{1{-tan}^{2}α}{{tan}^{2}α+1}$+$\frac{\sqrt{2}}{2}$ 
=$\frac{\sqrt{2}}{2}$•$\frac{6}{9+1}$+$\sqrt{2}$•$\frac{1-9}{1+9}$+$\frac{\sqrt{2}}{2}$=0,
故答案为:0.

点评 本题主要考查同角三角函数的基本关系,二倍角公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右焦点F到渐近线和直线$x=\frac{a^2}{c}$的距离之比为2:1,则双曲线的渐近线方程为(  )
A.y=±$\frac{\sqrt{3}}{3}$xB.y=±$\sqrt{2}$xC.y=±$\sqrt{3}$xD.y=±2x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某商场预计2018年第x月顾客对某种商品的需求量f(x)与x的关系近似满足:f(x)=-3x2+40x(x∈N*,1≤x≤12).该商品第x月的进货单价q(x)(单位:元)与x的近似关系是q(x)=150+2x(x∈N*,1≤x≤12),该商品每件的售价为185元,若不计其他费用且每月都能满足市场需求,试问商场2018年第几月份销售该商品的月利润最大,最大月利润为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)图1为某几何体的三视图,其中正视图为等腰直角三角形,侧视图与俯视图为正方形,求该几何体的表面积. 
(2)图2为某几何体三视图,已知三角形的三边长与圆的直径均为2,求该几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=4x3+ax2+bx+5的图象在x=1处的切线方程为y=-12x,且f(1)=-12,
(1)求函数f(x)的解析式和单调区间.
(2)求函数f(x)在[-3,1]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.直棱柱ABC-A1B1C1中,∠ACB=90°,AB=2,AC=1,AA1=3,求:三棱锥B1一ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图所示,程序框图输出的结果为(  )
A.15B.16C.136D.153

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆的中心为坐标原点O,焦点在x轴上,离心率为$\frac{\sqrt{2}}{2}$,且过点B(0,1),M(2,t)(t>0)是动点
(1)求椭圆的标准方程
(2)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值
(3)设点P(x,y)在椭圆上,求x+y的最大、最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.接下列不等式
(Ⅰ)-3x2-5x+2<0
(Ⅱ)x2+(1-a)x-a<0.

查看答案和解析>>

同步练习册答案