【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,曲线
的参数方程为
,(
为参数),以
为极点,
轴的正半轴建立极坐标系,曲线
是圆心在极轴上且经过极点的圆,射线
与曲线
交于点![]()
(Ⅰ)求曲线
的普通方程及
的直角坐标方程;
(Ⅱ)在极坐标系中,
是曲线
的两点,求
的值.
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程选讲
在直角坐标系
中,曲线C1的参数方程为
(a为参数),以原点O为极点,
以x轴正半轴为极轴,建立极坐标系,曲 线C2的极坐标方程为![]()
(1)求曲线C1的普通方程与曲线C2的直角坐标方程.
(2)设P为曲线C1上的动点,求点P到C2上点的距离的最小值,并求此时点P坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年全国数学奥赛试行改革:在高二一年中举行5次全区竞赛,学生如果其中2次成绩达全区前20名即可进入省队培训,不用参加其余的竞赛,而每个学生最多也只能参加5次竞赛.规定:若前4次竞赛成绩都没有达全区前20名,则第5次不能参加竞赛.假设某学生每次成绩达全区前20名的概率都是
,每次竞赛成绩达全区前20名与否互相独立.
(1)求该学生进入省队的概率.
(2)如果该学生进入省队或参加完5次竞赛就结束,记该学生参加竞赛的次数为
,求
的分布列及
的数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着我国经济的快速发展,民用汽车的保有量也迅速增长.机动车保有量的发展影响到环境质量、交通安全、道路建设等诸多方面.在我国,尤其是大中型城市,机动车已成为城市空气污染的重要来源.因此,合理预测机动车保有量是未来进行机动车污染防治规划、道路发展规划等的重要前提.从2012年到2016年,根据“云南省某市国民经济和社会发展统计公报”中公布的数据,该市机动车保有量数据如表所示.
年份 | 2012 | 2013 | 2014 | 2015 | 2016 |
年份代码 | 1 | 2 | 3 | 4 | 5 |
机动车保有量 | 169 | 181 | 196 | 215 | 230 |
![]()
(1)在图所给的坐标系中作出数据对应的散点图;
(2)建立机动车保有量
关于年份代码
的回归方程;
(3)按照当前的变化趋势,预测2017年该市机动车保有量.
附注:回归直线方程
中的斜率和截距的最小二乘估计公式分别为:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给定一个数列{an},在这个数列里,任取m(m≥3,m∈N*)项,并且不改变它们在数列{an}中的先后次序,得到的数列称为数列{an}的一个m阶子数列.已知数列{an}的通项公式为an=
(n∈N*,a为常数),等差数列a2,a3,a6是数列{an}的一个3阶子数列.
(1)求a的值;
(2)等差数列b1,b2,…,bm是{an}的一个m (m≥3,m∈N*) 阶子数列,且b1=
(k为常数,k∈N*,k≥2),求证:m≤k+1;
(3)等比数列c1,c2,…,cm是{an}的一个m (m≥3,m∈N*) 阶子数列,
求证:c1+c2+…+cm≤2-
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设△ABC的内角A,B,C所对的边分别为a,b,c,满足
.
(1)求角C的大小;
(2)设函数f(x)=cos(2x+C),将f(x)的图象向右平移
个单位长度后得到函数g(x)的图象,求函数g(x)在区间
上的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分13分)已知动圆
过定点
且与
轴截得的弦
的长为
.
(Ⅰ)求动圆圆心
的轨迹
的方程;
(Ⅱ)已知点
,动直线
和坐标轴不垂直,且与轨迹
相交于
两点,试问:在
轴上是否存在一定点
,使直线
过点
,且使得直线
,
,
的斜率依次成等差数列?若存在,请求出定点
的坐标;否则,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列
为递增的等比数列,
,
数列
满足
.
(Ⅰ)求数列
的通项公式;(Ⅱ)求证:
是等差数列;
(Ⅲ)设数列
满足
,且数列
的前
项和
,并求使得
对任意
都成立的正整数
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,
是边长为
的正方形,
平面
,
,
,
与平面
所成角为
.
(Ⅰ)求证:
平面
.
(Ⅱ)求二面角
的余弦值.
(Ⅲ)设点
是线段
上一个动点,试确定点
的位置,使得
平面
,并证明你的结论.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com