【题目】(本小题满分13分)已知动圆
过定点
且与
轴截得的弦
的长为
.
(Ⅰ)求动圆圆心
的轨迹
的方程;
(Ⅱ)已知点
,动直线
和坐标轴不垂直,且与轨迹
相交于
两点,试问:在
轴上是否存在一定点
,使直线
过点
,且使得直线
,
,
的斜率依次成等差数列?若存在,请求出定点
的坐标;否则,请说明理由.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知直线l过点P(-3,2),倾斜角为
,且
.曲线C的参数方程为
(
为参数).直线l与曲线C交于A、B两点,线段AB的中点为M.
(Ⅰ)求直线l的参数方程和曲线C的普通方程;
(Ⅱ)求线段PM的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,曲线
的参数方程为
,(
为参数),以
为极点,
轴的正半轴建立极坐标系,曲线
是圆心在极轴上且经过极点的圆,射线
与曲线
交于点![]()
(Ⅰ)求曲线
的普通方程及
的直角坐标方程;
(Ⅱ)在极坐标系中,
是曲线
的两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知椭圆
的左、右焦点分别为
、
,定点A(-2,0),B(2,0).
![]()
(1) 若椭圆C上存在点T,使得
,求椭圆C的离心率的取值范围;
(2) 已知点
在椭圆C上.
①求椭圆C的方程;
②记M为椭圆C上的动点,直线AM,BM分别与椭圆C交于另一点P,Q,若
,
.求λ+μ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着高等级公路的迅速发展,公路绿化受到高度重视,需要大量各种苗木.某苗圃培植场对100棵“天竺桂”的移栽成活量
(单位:棵)与在前三个月内浇水次数
间的关系进行研究,根据以往的记录,整理相关的数据信息如图所示:
![]()
(1)结合图中前4个矩形提供的数据,利用最小二乘法求
关于
的回归直线方程;
(2)用
表示(1)中所求的回归直线方程得到的100棵“天竺桂”的移栽成活量的估计值,当图中余下的矩形对应的数据组
的残差的绝对值
,则回归直线方程有参考价值,试问:(1)中所得到的回归直线方程有参考价值吗?
(3)预测100棵“天竺桂”移栽后全部成活时,在前三个月内浇水的最佳次数.
附:回归直线方程为
,其中
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班级有50名学生,其中有30名男生和20名女生.随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是( )
A.这种抽样方法是一种分层抽样
B.这种抽样方法是一种系统抽样
C.这五名男生成绩的方差大于这五名女生成绩的方差
D.该班男生成绩的平均数小于该班女生成绩的平均数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
(
)的左、右焦点分别为
、
,设点
,在
中,
,周长为
.
![]()
(1)求椭圆
的方程;
(2)设不经过点
的直线
与椭圆
相交于
、
两点,若直线
与
的斜率之和为
,求证:直线
过定点,并求出该定点的坐标;
(3)记第(2)问所求的定点为
,点
为椭圆
上的一个动点,试根据
面积
的不同取值范围,讨论
存在的个数,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com