精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

已知直线l过点P(-32),倾斜角为,且.曲线C的参数方程为为参数).直线l与曲线C交于AB两点,线段AB的中点为M

(Ⅰ)求直线l的参数方程和曲线C的普通方程;

(Ⅱ)求线段PM的长.

【答案】(Ⅰ)l的参数方程为t为参数).C的普通方程为(Ⅱ)

【解析】试题分析:(Ⅰ)由条件,有 ,所以,又直线l过点P(-3,2),即可得直线l的参数方程 曲线C的参数方程为为参数)可得曲线C的普通方程(Ⅱ)直线l的参数方程与曲线C的普通方程联立,根据韦达定理得出AB的中点M对应的参数为即可得PM的长.

试题解析:

(Ⅰ)由条件,有 ,所以

又直线l过点P(-3,2),所以直线l的参数方程为t为参数). ①

曲线C的参数方程为为参数),曲线C的普通方程为. ②

(Ⅱ)①代入②,得

AB对应的参数分别为t1t2,则

所以AB的中点M对应的参数为

所以线段PM的长为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面的菱形,侧面是边长为2的正三角形,且与底面垂直, 的中点.

(1)求证: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在曲线上,过原点,且与轴的另一个交点为,若线段和曲线上分别存在点、点和点,使得四边形(点 顺时针排列)是正方形,则称点为曲线完美点.那么下列结论中正确的是( ).

A. 曲线上不存在完美点

B. 曲线上只存在一个完美点,其横坐标大于

C. 曲线上只存在一个完美点,其横坐标大于且小于

D. 曲线上存在两个完美点,其横坐标均大于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程选讲

在直角坐标系中,曲线C1的参数方程为(a为参数),以原点O为极点,

以x轴正半轴为极轴,建立极坐标系,曲 线C2的极坐标方程为

(1)求曲线C1的普通方程与曲线C2的直角坐标方程.

(2)设P为曲线C1上的动点,求点P到C2上点的距离的最小值,并求此时点P坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数= .

(1)若函数处取得极值,求的值,并判断处取得极大值还是极小值.

(2)若上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,等腰梯形中, 于点 ,且.沿折起到的位置(如图),使

I)求证: 平面

II)求三棱锥的体积.

III)线段上是否存在点,使得平面,若存在,指出点的位置并证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在其定义域内有两个不同的极值点.

1)求的取值范围;

2)记两个极值点为,且,已知,若不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年全国数学奥赛试行改革:在高二一年中举行5次全区竞赛,学生如果其中2次成绩达全区前20名即可进入省队培训,不用参加其余的竞赛,而每个学生最多也只能参加5次竞赛.规定:若前4次竞赛成绩都没有达全区前20名,则第5次不能参加竞赛.假设某学生每次成绩达全区前20名的概率都是,每次竞赛成绩达全区前20名与否互相独立.

(1)求该学生进入省队的概率.

(2)如果该学生进入省队或参加完5次竞赛就结束,记该学生参加竞赛的次数为,求的分布列及的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分13分)已知动圆过定点且与轴截得的弦的长为

)求动圆圆心的轨迹的方程;

)已知点,动直线和坐标轴不垂直,且与轨迹相交于两点,试问:在轴上是否存在一定点,使直线过点,且使得直线,的斜率依次成等差数列?若存在,请求出定点的坐标;否则,请说明理由

查看答案和解析>>

同步练习册答案