【题目】如图,等腰梯形中, , 于点, ,且.沿把折起到的位置(如图),使.
(I)求证: 平面.
(II)求三棱锥的体积.
(III)线段上是否存在点,使得平面,若存在,指出点的位置并证明;若不存在,请说明理由.
【答案】(I)见解析;(II);(III)存在, 为中点.
【解析】试题分析:(Ⅰ)推导出⊥AD,AB⊥.从而⊥面ABCD.进而⊥CD,再求出AC⊥CD.由此能证明CD⊥平面.
(Ⅱ)由VA-P'BC=VP'-ABC,能求出三棱锥A-P'BC的体积.
(Ⅲ)取P'A中点M,P'D中点N,连结BM,MN,NC,推导出四边形BCNM为平行四边形,由此能求出存在一点M,M为的中点,使得BM∥面CD.
试题解析:(I)∵,故,
∵在等腰梯形中, ,
∴在四棱锥中, ,
又∵,
∴平面,
∵平面,
∴,
∵等腰梯形中,
, ,
且,
∴, , ,
∴,
∴,
∵,
∴平面.
(II),
∵平面,
∴,
.
(III)存在点, 为中点,使得平面,
证明:取, 中点为, ,
连接, , ,
∵, 是, 中点,
∴,
∵,
∴,
∴是平行四边形,
∴,
∵面,
面,
∴平面.
科目:高中数学 来源: 题型:
【题目】平面直角坐标系中,经过椭圆: 的一个焦点的直线与相交于两点, 为的中点,且斜率是.
(Ⅰ)求椭圆的方程;
(Ⅱ)直线分别与椭圆和圆: 相切于点,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在坐标原点,焦点在轴上,短轴长为,且两个焦点和短轴的两个端点恰为一个正方形的顶点,过右焦点与轴不垂直的直线交椭圆于, 两点.
(Ⅰ)求椭圆的方程.
(Ⅱ)当直线的斜率为时,求的面积.
(Ⅲ)在线段上是否存在点,使得经, 为领边的平行四边形是菱形?若存在,求出的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线的方程为(, 为常数).
(1)判断曲线的形状;
(2)设曲线分别与轴, 轴交于点, (, 不同于原点),试判断的面积是否为定值?并证明你的判断;
(3)设直线: 与曲线交于不同的两点, ,且,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知直线l过点P(-3,2),倾斜角为,且.曲线C的参数方程为(为参数).直线l与曲线C交于A、B两点,线段AB的中点为M.
(Ⅰ)求直线l的参数方程和曲线C的普通方程;
(Ⅱ)求线段PM的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解学生的身体状况,某校随机抽取了一批学生测量体重,经统计,这批学生的体重数据(单位:千克)全部介于至之间,将数据分成以下组,第一组,第二组,第三组,第四组,第五组,得到如图所示的频率分布直方图,现采用分层抽样的方法,从第、、组中随机抽取名学生做初检.
(Ⅰ)求每组抽取的学生人数.
(Ⅱ)若从名学生中再次随机抽取名学生进行复检,求这名学生不在同一组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面,底面为梯形,,,且.
(Ⅰ)若点为上一点且,证明:平面;
(Ⅱ)求二面角的大小;
(Ⅲ)在线段上是否存在一点,使得?若存在,求出的长;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着高等级公路的迅速发展,公路绿化受到高度重视,需要大量各种苗木.某苗圃培植场对100棵“天竺桂”的移栽成活量(单位:棵)与在前三个月内浇水次数间的关系进行研究,根据以往的记录,整理相关的数据信息如图所示:
(1)结合图中前4个矩形提供的数据,利用最小二乘法求关于的回归直线方程;
(2)用表示(1)中所求的回归直线方程得到的100棵“天竺桂”的移栽成活量的估计值,当图中余下的矩形对应的数据组的残差的绝对值,则回归直线方程有参考价值,试问:(1)中所得到的回归直线方程有参考价值吗?
(3)预测100棵“天竺桂”移栽后全部成活时,在前三个月内浇水的最佳次数.
附:回归直线方程为,其中, .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com