| A. | f(x)=x0与g(x)=1 | B. | f(x)=x与g(x)=$\frac{{x}^{2}}{x}$ | ||
| C. | f(x)=x2-1与g(x)=x2+1 | D. | f(x)=|x|与g(x)=$\sqrt{{x}^{2}}$ |
分析 根据两个函数的定义域相同,对应关系也相同,判断它们是同一函数即可.
解答 解:对于A:f(x)=x0的定义域为{x|x≠0},而g(x)=1定义域为R,它们的定义域不同,∴不是同一函数;
对于B:f(x)=x的定义域为R,而g(x)=$\frac{{x}^{2}}{x}$定义域为{x|x≠0},它们的定义域不同,∴不是同一函数;
对于C:f(x)=x2-1和g(x)=x2+1的定义域都是R,它们的定义域相同,但对应关系不同,∴不是同一函数;
对于D:f(x)=|x|和g(x)=$\sqrt{{x}^{2}}=|x|$的定义域都是R,它们的定义域相同,对应关系也相同,∴是同一函数;
故选D.
点评 本题考查了判断两个函数是否为同一函数的问题,是基础题目.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3-2{a}_{n}}{2}$ | B. | $\frac{2{a}_{n}-3}{2}$ | C. | $\frac{3-{a}_{n}}{2}$ | D. | $\frac{{a}_{n}-3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-3,+∞) | B. | (-∞,-3] | C. | [$\sqrt{2}$,+∞) | D. | (-∞,$\sqrt{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 2$\sqrt{7}$ | C. | 4$\sqrt{7}$ | D. | 4$\sqrt{14}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com