精英家教网 > 高中数学 > 题目详情
12.已知平面区域Ω={(x,y)|x>0,y>0,x+y<2},A={(x,y)|x<1,y<1,x+y>1},若在区间Ω内随机投一点P,则点P落入区域A的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

分析 根据二元一次不等式组表示的平面区域的原理,分别作出集合Ω和集合A对应的平面区域,得到它们都直角三角形,计算出这两个直角三角形的面积后,再利用几何概型的概率公式进行计算即可.

解答 解:区域Ω={(x,y)|x>0,y>0,x+y<2},
表示的图形是第一象限位于直线x+y=2的下方部分,
面积S=$\frac{1}{2}×2×2$=2
再观察集合A={(x,y)|x<1,y<1,x+y>1},
表示的图形的面积为$\frac{1}{2}×1×1$=$\frac{1}{2}$,
根据几何概率的公式,得向区域Ω上随机投一点P,P落入区域A的概率为P=$\frac{\frac{1}{2}}{2}$=$\frac{1}{4}$
故选C.

点评 本题主要考查了二元一次不等式组表示的平面区域和几何概率模型,准确画作相应的平面区域,熟练地运用面积比求相应的概率,是解决本题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=lnx+ax2,g(x)=$\frac{1}{x}$+x+b,且直线y=-$\frac{1}{2}$是函数f(x)的一条切线.
(Ⅰ)求a的值;
(Ⅱ)对任意的x1∈[1,$\sqrt{e}$],都存在x2∈[1,4],使得f(x1)=g(x2),求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.4人站成一排,其中甲乙相邻则共有12种不同的排法.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{1}{2}$x2+ax-2lnx(a∈R).
(1)若a=1,求函数f(x)的单调区间和极值;
(2)若函数f(x)在区间(0,2]上单调递减,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知复数$\frac{a+ai}{2-ai}$为纯虚数(其中i为虚数单位),则实数a的值为(  )
A.0B.1C.2D.0或2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知过抛物线y2=2px(p>0)的焦点,斜率为1的直线交抛物线于A,B两点,则|AB|=8,则该抛物线的方程为y2=4x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在长方体ABCD-A1B1C1D1中,若$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$,$\overrightarrow{A{A}_{1}}$=$\overrightarrow{c}$,则$\overrightarrow{A{C}_{1}}$=(  )
A.$\overrightarrow{a}$+$\overrightarrow{b}$-$\overrightarrow{c}$B.$\overrightarrow{a}$-$\overrightarrow{b}$+$\overrightarrow{c}$C.$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$D.-$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列四组函数中,表示同一函数的是(  )
A.f(x)=x0与g(x)=1B.f(x)=x与g(x)=$\frac{{x}^{2}}{x}$
C.f(x)=x2-1与g(x)=x2+1D.f(x)=|x|与g(x)=$\sqrt{{x}^{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}的前n项和为Sn,a1=$\frac{1}{2}$,Sn=n2an-n(n-1),n=1,2,…
(1)证明:数列{$\frac{n+1}{n}$Sn}是等差数列,并求Sn
(2)设bn=$\frac{{S}_{n}}{{n}^{3}+3{n}^{2}}$,求证:b1+b2+…+bn<$\frac{5}{11}$.

查看答案和解析>>

同步练习册答案