【题目】已知函数f(x)=
(1)试比较f(f(-3))与f(f(3))的大小;
(2)画出函数的图象;
(3)若f(x)=1,求x的值.
【答案】(1) f(f(-3))>f(f(3)) (2)见解析(3) x的值为0或1+
【解析】试题分析:(1)根据分段函数的性质,分别代入值求出即可;(2)利用函数图象的画法画图即可;(3)对分类讨论,解方程即可.
试题解析:(1)∵-3<1
∴f(-3)=-2×(-3)+1=7
∵7>1
∴f(f(-3))=f(7)=72-2×7=35
∵3>1
∴f(3)=32-2×3=3
∴f(f(3))=3
∴f(f(-3))>f(f(3)).
(2)函数图象如图所示:
(3)由f(x)=1的函数图象综合判断可知,当x∈(-∞,1)时,得f(x)=-2x+1=1,解得x=0;
当x∈[1,+∞)时,得f(x)=x2-2x=1,解得x=1+或x=1- (舍去).
综上可知x的值为0或1+.
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥PABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:
(1)直线PA∥平面DEF;
(2)平面BDE⊥平面ABC.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+4xsinα+tanα(0<a<)有且仅有一个零点
(Ⅰ)求sin2a的值;
(Ⅱ)若cos2β+2sin2β=+sinβ, β∈,求β-2α的值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,已知⊙O的半径是1,点C在直径AB的延长线上,BC=1,点P是⊙O上半圆上的一个动点,以PC为边作等边三角形PCD,且点D与圆心分别在PC的两侧.
(1)若∠POB=θ,试将四边形OPDC的面积y表示为关于θ的函数;
(2)求四边形OPDC面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据函数f(x)=log2x的图象和性质解决以下问题:
(1)若f(a)>f(2),求a的取值范围;
(2)y=log2(2x-1)在[2,14]上的最值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)我们把一系列向量按次序排成一列,称之为向量列,记作,已知向量列满足:,.
(1)证明:数列是等比数列;
(2)设表示向量与间的夹角,若,对于任意正整数,不等式恒成立,求实数的范围
(3)设,问数列中是否存在最小项?若存在,求出最小项;若不存在,请说明理由
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,过点P(2,1)的直线l的参数方程为 (t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ=2cosθ,已知直线l与曲线C交于A、B两点.
(1)求曲线C的直角坐标方程;
(2)求|PA||PB|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)=. ,直线x=0,x=e,y=0,y=1所围成的区域为M,曲线y=f(x)与直线y=1围成的区域为N,在区域M内任取一个点P,则点P在区域N内概率为( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com