精英家教网 > 高中数学 > 题目详情
8.设集合A={x|x2+x-2≤0},B={x|0≤x≤4},则A∩B=(  )
A.[-2,4]B.[0,1]C.[-2,0]D.[1,4]

分析 运用交集的定义计算即可得到所求.

解答 解:集合A={x|x2+x-2≤0}={x|-2≤x≤1}=[-2,1],
B={x|0≤x≤4}=[0,4],
则A∩B={x|0≤x≤1}=[0,1],
故选:B.

点评 本题考查集合的运算,主要是交集的含义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.函数$f(x)=tan(ωx+\frac{π}{3})(ω>0)$的最小正周期为$\frac{π}{2}$,为了得到y=tanωx的图象,只需把y=f(x)的图象上所有点(  )
A.向右平移$\frac{π}{6}$个单位长度B.向右平移$\frac{π}{12}$个单位长度
C.向左平移$\frac{π}{6}$个长度单位D.向左平移$\frac{π}{12}$个长度单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知复数$\frac{2-ai}{i}=1+bi$,其中a,b∈R,i是虚数单位,则|a+bi|=(  )
A.-1-3iB.$\sqrt{5}$C.10D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数sgn(x)=$\left\{\begin{array}{l}{-1,x<0}\\{0,x=0}\\{1,x>0}\end{array}$,设a=$\frac{1}{{{{log}_{\frac{1}{4}}}\frac{1}{2015}}}$+$\frac{1}{{{{log}_{\frac{1}{504}}}\frac{1}{2015}}}$,b=2017,则$\frac{a+b+(a-b)sgn(a-b)}{2}$的值为2017.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=me2x+nex,(m,n∈R),g(x)=x.
(1)当n=4时,若F(x)=f(x)-g(x)存在单调递增区间,求m的取值范围;
(2)当m>0时,设f(x)图象C1与g(x)图象C2相交于不同两点M,N,过线段MN的中点P作x轴的垂线交C1于点Q(x0,y0),若记f′(x)为f(x)导数,求证:f′(x0)<1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=axsinx-$\frac{3}{2}$(a∈R),若对x∈[0,$\frac{π}{2}$],f(x)的最大值为$\frac{π-3}{2}$,则函数f(x)在(0,π)内的零点个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.函数f(x)=$\frac{1-x}{ax}$+lnx是[1,+∞)上的增函数.
(Ⅰ)求正实数a的取值范围;
(Ⅱ)若函数g(x)=x2+2x,在使g(x)≥M对定义域内的任意x值恒成立的所有常数M中,我们把M的最大值M=-1叫做f(x)=x2+2x的下确界,若函数f(x)=$\frac{1-x}{ax}$+lnx的定义域为[1,+∞),根据所给函数g(x)的下确界的定义,求出当a=1时函数f(x)的下确界.
(Ⅲ)设b>0,a>1,求证:ln$\frac{a+b}{b}$>$\frac{1}{a+b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.抛物线x=-8y2的焦点坐标是(  )
A.(-$\frac{1}{32}$,0)B.(-2,0)C.($\frac{1}{32}$,0)D.(0,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.一条光线从点A(-4,0)射入,与直线y=3相交于点B(-1,3),经直线y=3反射后过点C(m,-1),直线l过点C且分别与x轴和y轴的负半轴交于P,Q两点,O为坐标原点,则当△OPQ的面积最小时直线l的方程为(  )
A.$\frac{x}{4}$-$\frac{y}{4}$=1B.$\frac{x}{2}$-$\frac{y}{6}$=1C.$\frac{x}{6}$-$\frac{y}{2}$=1D.$\frac{x}{12}$-$\frac{3y}{4}$=1

查看答案和解析>>

同步练习册答案