分析 求出a=$lo{g}_{\frac{1}{2015}}\frac{1}{2016}$,由此利用函数性质能求出$\frac{a+b+(a-b)sgn(a-b)}{2}$的值.
解答 解:∵sgn(x)=$\left\{\begin{array}{l}{-1,x<0}\\{0,x=0}\\{1,x>0}\end{array}$,
设$a=\frac{1}{{{{log}_{\frac{1}{4}}}\frac{1}{2015}}}+\frac{1}{{{{log}_{\frac{1}{504}}}\frac{1}{2015}}},b=2017$,
∴a=$lo{g}_{\frac{1}{2015}}\frac{1}{4}$+$lo{g}_{\frac{1}{2015}}\frac{1}{504}$=$lo{g}_{\frac{1}{2015}}\frac{1}{2016}$,
∴$\frac{a+b+(a-b)sgn(a-b)}{2}$=$\frac{lo{g}_{\frac{1}{2015}}\frac{1}{2016}+2017+(lo{g}_{\frac{1}{2015}}\frac{1}{2016}-2017)×(-1)}{2}$=2017.
故答案为:2017.
点评 本题考查函数值的求不地,是基础题,解题时要认真审题,注意函数性质的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | (0,+∞) | B. | (0,$\frac{3}{2}$) | C. | (-1,3) | D. | ($-\frac{1}{2}$,$\frac{3}{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com