精英家教网 > 高中数学 > 题目详情
1.已知tanα=2且$π<α<\frac{3π}{2}$,则sinα的值是-$\frac{2\sqrt{5}}{5}$.

分析 利用三角函数基本关系式即可得出.

解答 解:∵tanα=2且$π<α<\frac{3π}{2}$,则sinα<0.
∴$\frac{sinα}{cosα}$=2,sin2α+cos2α=1,
联立解得sinα=-$\frac{2\sqrt{5}}{5}$.
故答案为:-$\frac{2\sqrt{5}}{5}$.

点评 本题考查了三角函数基本关系式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.如图,网格纸上小正方形边长为1,粗线是一个棱锥的三视图,则此棱锥的体积为(  ) 
A.$\frac{8}{3}$B.$\frac{4}{3}$C.4$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知奇函数f(x)满足,x>0时,f(x)=x2-2x;则x<0时,f(x)的解析式为(  )
A.-x2-2xB.-x2+2xC.x2-2xD.x2+2x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.顶点在单位圆上的△ABC中,角A,B,C所对的边分别为a,b,c.若b2+c2=5,$sinA=\frac{{\sqrt{3}}}{2}$,则S△ABC=$\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数y=Asin(ω•x+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则此函数的解析式为y=3sin(2x+$\frac{π}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.过点A(1,0)的直线l的倾斜角为$α(0<α<\frac{π}{2})$,直线l绕点A逆时针旋转$\frac{π}{3}$角度得到直线y=1-x.
(1)求角α及$cos(\frac{π}{6}-α)$的值;
(2)圆心角为α的扇形周长c为4.求当扇形的面积取最大值时,扇形的半径r及弧长l.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数$f(x)=tan(ωx+\frac{π}{3})(ω>0)$的最小正周期为$\frac{π}{2}$,为了得到y=tanωx的图象,只需把y=f(x)的图象上所有点(  )
A.向右平移$\frac{π}{6}$个单位长度B.向右平移$\frac{π}{12}$个单位长度
C.向左平移$\frac{π}{6}$个长度单位D.向左平移$\frac{π}{12}$个长度单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知二次函数f(x)=x2-16x+q+3
(1)当q=1时,求f(x)在[-1,9]上的值域;
(2)问:是否存在常数q(0<q<10),使得当x∈[q,10]时,f(x)的最小值为-51?若存在,求出q的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数sgn(x)=$\left\{\begin{array}{l}{-1,x<0}\\{0,x=0}\\{1,x>0}\end{array}$,设a=$\frac{1}{{{{log}_{\frac{1}{4}}}\frac{1}{2015}}}$+$\frac{1}{{{{log}_{\frac{1}{504}}}\frac{1}{2015}}}$,b=2017,则$\frac{a+b+(a-b)sgn(a-b)}{2}$的值为2017.

查看答案和解析>>

同步练习册答案