精英家教网 > 高中数学 > 题目详情
3.若${(\sqrt{x}-\frac{1}{x})^n}$的二项展开式中各项的二项式系数的和是64,则n=6,展开式中的常数项为15.(用数字作答)

分析 首先由二项式系数的性质列式求得n值,再写出二项展开式的通项并整理,由x得指数为0求得r值,则答案可求.

解答 解:由题意知:2n=64,即n=6;
则$(\sqrt{x}-\frac{1}{x})^{n}=(\sqrt{x}-\frac{1}{x})^{6}$,
由${T}_{r+1}={C}_{6}^{r}(\sqrt{x})^{6-r}(-\frac{1}{x})^{r}=(-1)^{r}{C}_{6}^{r}{x}^{3-\frac{3r}{2}}$.
令3-$\frac{3r}{2}=0$,得r=2.
∴展开式中的常数项为$(-1)^{2}{C}_{6}^{2}=15$.
故答案为:6;15.

点评 本题考查了二项式系数的性质,关键是熟记二项展开式的通项,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知圆O的方程是x2+y2-8x-2y+10=0,过点M(3,0)的最短弦所在的直线方程是x+y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知实数a,b满足1≤a+b≤3且-1≤a-b≤1,则4a+2b的取值范围为[2,10].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知二项式${(2x-\frac{1}{x})^n}$展开式中二项式系数最大的是第4项,则展开式中的常数项为-160(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.梯形ABCD中,AB=$\frac{1}{2}$CD,AB∥CD,点P为梯形所在平面内一点,满足:$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$+$\overrightarrow{PD}$=$\overrightarrow{AB}$+$\overrightarrow{CD}$,若△ABC的面积为1,则△PCD的面积为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x+a•e-x
(Ⅰ)当a=e2时,求f(x)在区间[1,3]上的最小值;
(Ⅱ)求证:存在实数x0∈[-3,3],有f(x0)>a.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,△ABC是边长为1的正三角形,以A为圆心,AC为半径,沿逆时针方向画圆弧,交BA延长线于A1,记弧CA1的长为l1;以B为圆心,BA1为半径,沿逆时针方向画圆弧,交CB延长线于A2,记弧A1A2的长为l2;以C为圆心,CA2为半径,沿逆时针方向画圆弧,交AC延长线于A3,记弧A2A3的长为l3,则l1+l2+l3=4π.如此继续以A为圆心,AA3为半径,沿逆时针方向画圆弧,交AA1延长线于A4,记弧A3A4的长为l4,…,当弧长ln=8π时,n=12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.一个圆锥的三视图及其尺寸如图所示,若一个平行于圆锥底面的平面将此圆锥截成体积之比1:7的上、下两部分,则截面的面积为(  )
A.$\frac{π}{3}$B.πC.$\frac{9π}{4}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知(a+i)(1-bi)=2i(其中a,b均为实数,i为虚数单位),则|a+bi|等于(  )
A.2B.$\sqrt{2}$C.1D.1或$\sqrt{2}$

查看答案和解析>>

同步练习册答案