精英家教网 > 高中数学 > 题目详情
13.将一颗骰子先后抛掷2次,观察向上的点数,则所得的两个点数中至少有一个是奇数的概率为$\frac{3}{4}$.

分析 将一颗骰子先后抛掷2次,含有36个等可能基本事件,两数中至少有一个奇数包含两个数有一个奇数,两个数都是奇数两种情况,这样做起来比较繁琐,可以选用它的对立事件来,对立事件是两数均为偶数,通过列举得到结论.

解答 解:将一颗骰子先后抛掷2次,此问题中含有36个等可能基本事件
记“两数中至少有一个奇数”为事件A,
则事件A与“两数均为偶数”为对立事件,
两数都是偶数包含(2,2),(2,4),(2,6),(4,2),(4,4),(4,6),(6,2),(6,4),(6,6)共9中结果,
∴P(A)=1-$\frac{9}{36}$=$\frac{3}{4}$.
故答案为:$\frac{3}{4}$

点评 本题考查的是古典概型,学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知实数ai,bi(i=1,2,3)满足a1<a2<a3,b1<b2<b3,且(ai-b1)(ai-b2)(ai-b3)=-1(i=1,2,3),则下列结论正确的是(  )
A.b1<a1<a2<b2<b3<a3B.a1<b1<b2<a2<a3<b3
C.a1<a2<b1<b2<a3<b3D.b1<b2<a1<a2<b3<a3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某中学校本课程开设了A,B,C,D共4门选修课,每个学生必须且只能选修1门选修课,现有该校的甲、乙、丙3名学生.
(Ⅰ)求在D课程没有被选中的条件下,A课程被甲选中的概率;
(Ⅱ)记“这3名学生选择A课程的人数”为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知集合A={x|x2-x≤0},B={-1,0,1},则A∩B={0,1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知实数x,y满足条件$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{x+y≤1}\end{array}\right.$,则z=x-2y的最大值与最小值之差为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在三棱柱ABC-A1B1C1中,AB=3,AA1=AC=4,AA1⊥平面ABC; AB⊥AC,
(1)求二面角A1-BC1-B1的余弦值;
(2)在线段BC1存在点D,使得AD⊥A1B,求$\frac{BD}{B{C}_{1}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.对于任意实数x,记[x]表示不超过x的最大整数,{x}=x-[x],[x]表示不小于x的最小整数,若x1,x2,…,xm(0≤x1<x2<…<xm≤6)是区间[0,6]中满足方程[x]•{x}•[x]=1的一切实数,则x1+x2+…+xm的值是$\frac{95}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知:椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{1}{2}$,短半轴长为$\sqrt{3}$;斜率为$\frac{b}{a}$的动直线l与椭圆C交于A,B两点,与x轴,y轴相交于P,Q两点(如图所示).
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)试探究$\frac{|AP|}{|BQ|}$是否为定值?若是定值,试求出该定值;若不是定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数y=sin(x+φ)(|φ|<$\frac{π}{2}$)的图象与x轴的一个交点是(-$\frac{8π}{3}$,0),试求这个函数的解析式.

查看答案和解析>>

同步练习册答案