精英家教网 > 高中数学 > 题目详情
1.用数学归纳法证明1+2+3+…+(2n+1)=(n+1)(2n+1)时,从n=k到n=k+1,左边需增添的代数式是(  )
A.2k+2B.2k+3C.2k+1D.(2k+2)+(2k+3)

分析 从式子1+2+22+…+25n-1是观察当n=1时的值以及当从n=k到n=k+1的变化情况,从而解决问题.

解答 解:当n=1时,原式的值为1+2+22+23+24=31,1+2+3=(1+1)(2+1)
当n=k时,原式左侧:1+2+3+…+(2k+1),
∴从k到k+1时需增添的项是(2k+2)+(2k+3)
故选:D.

点评 本题主要考查数学归纳法,数学归纳法的基本形式:设P(n)是关于自然数n的命题,若1°P(n0)成立(奠基)2°假设P(k)成立(k≥n0),可以推出P(k+1)成立(归纳),则P(n)对一切大于等于n0的自然数n都成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=|x+1|-|2x-1|
(Ⅰ)解关于x的不等式f(x)<-1
(Ⅱ)若f(x)≤a|x-2|对任意x∈R成立,求实数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.椭圆$\frac{{x}^{2}}{100}$+$\frac{{y}^{2}}{36}$=1的焦点坐标是(8,0),(-8,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,已知有直三棱柱ABC-A1B1C1中,AA1=AB=AC=1,AB⊥AC,M、N、Q分别是CC1、BC、AC的中点,点P在线段A1B1上运动.
(1)证明:无论点P怎样运动,总有AM⊥平面PNQ;
(2)是否存在点P,使得平面PMN与平面PNQ所成的锐二面角为45°?若存在,试确定点P的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知实数a,b,c满足a>b>c,求证:$\frac{1}{a-b}$+$\frac{1}{b-c}$+$\frac{1}{c-a}$>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知定义域为R的函数f(x)满足f(x)=2f(2-x)-x2+8x-8,则曲线y=f(x)在点(2,f((2))处的切线方程是(  )
A.4x-y+4=0B.4x-y-4=0C.4x+y+4=0D.4x+y-4=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知空间四边形OABC,如图所示,其对角线为OB,AC.M,N分别为OA,BC的中点,点G在线段MN上,且$\overrightarrow{MG}$=2$\overrightarrow{GN}$,现用基向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$表示向量$\overrightarrow{OG}$,并设$\overrightarrow{OG}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$,则x+y+z=$\frac{5}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设F1、F2是双曲线${x^2}-\frac{y^2}{9}=1$的左、右焦点,点P在双曲线上,且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,则点P到x轴的距离等于$\frac{9}{10}\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知a>b>c,且a+b+c=0,求证:$\frac{\sqrt{{b}^{2}-ac}}{a}$<$\sqrt{3}$.

查看答案和解析>>

同步练习册答案