精英家教网 > 高中数学 > 题目详情
12.椭圆$\frac{{x}^{2}}{100}$+$\frac{{y}^{2}}{36}$=1的焦点坐标是(8,0),(-8,0).

分析 求出椭圆的a,b,由c=$\sqrt{{a}^{2}-{b}^{2}}$,即可得到椭圆的焦点.

解答 解:椭圆$\frac{{x}^{2}}{100}$+$\frac{{y}^{2}}{36}$=1的a=10,b=6,
c=$\sqrt{{a}^{2}-{b}^{2}}$=$\sqrt{100-36}$=8,
即有椭圆的焦点为(8,0),(-8,0).
故答案为:(8,0),(-8,0).

点评 本题考查椭圆的方程和性质,掌握椭圆的a,b,c的关系和焦点的位置是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知数列{an}{bn},对任何正整数n,都有a1b1+a2b2+a3b3+…+an-1•bn-1+an•bn=(n-1)•2n+1
(1)若数列{bn}是首项为1,公比为2的等比数列,求数列{an}通项公式;
(2)求证:$\frac{1}{{a}_{1}•{b}_{1}}$+$\frac{1}{{a}_{2}•{b}_{2}}$+$\frac{1}{{a}_{3}•{b}_{3}}$+…+$\frac{1}{{a}_{n}•{b}_{n}}$<$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求函数y=$\frac{x+5}{x-2}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知f(x)=|1-2x|,x∈[0,1],那么方程f(f(f(x)))=x的解的个数是8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.四棱锥S-ABCD的底面是边长为2的正方形,点S,A,B,C,D均在半径为$\sqrt{3}$的同一半球面上,则当四棱锥S-ABCD的体积最大时,底面ABCD的中心与顶点S之间的距离为(  )
A.2-$\sqrt{3}$B.2C.$\sqrt{4+\sqrt{6}}$D.$\sqrt{3}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.椭圆$\frac{x^2}{4}$+$\frac{y^2}{3}$=1的焦距为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)两个焦点分别为F1,F2,若C上存在点P满足|PF1|:|F1F2|:|PF2|=4:3:2,则椭圆C的离心率等于(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.用数学归纳法证明1+2+3+…+(2n+1)=(n+1)(2n+1)时,从n=k到n=k+1,左边需增添的代数式是(  )
A.2k+2B.2k+3C.2k+1D.(2k+2)+(2k+3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.生活中常用的十二进位制,如一年有12个月,时针转一周为12个小时,等等,就是逢12进1的计算制,现采用数字0~9和字母A、B共12个计数符号,这些符号与十进制的数的对应关系如下表;
十二进制0123456789AB
十进制01234567891011
例如用十二进位制表示A+B=19,照此算法在十二进位制中运算A×B=92.

查看答案和解析>>

同步练习册答案