精英家教网 > 高中数学 > 题目详情
13.已知空间四边形OABC,如图所示,其对角线为OB,AC.M,N分别为OA,BC的中点,点G在线段MN上,且$\overrightarrow{MG}$=2$\overrightarrow{GN}$,现用基向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$表示向量$\overrightarrow{OG}$,并设$\overrightarrow{OG}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$,则x+y+z=$\frac{5}{6}$.

分析 结合图形,由M、N是OM、BC的中点,用$\overrightarrow{OA}$、$\overrightarrow{OB}$、$\overrightarrow{OC}$表示出$\overrightarrow{OM}$、$\overrightarrow{ON}$,
从而得出$\overrightarrow{MN}$,$\overrightarrow{MG}$,即可得出$\overrightarrow{OG}$.

解答 解:如图所示,
连接ON,∵M、N是OM、BC的中点,
∴$\overrightarrow{OM}$=$\frac{1}{2}$$\overrightarrow{OA}$,$\overrightarrow{ON}$=$\frac{1}{2}$($\overrightarrow{OB}$+$\overrightarrow{OC}$),
∴$\overrightarrow{MN}$=$\overrightarrow{ON}$-$\overrightarrow{OM}$=$\frac{1}{2}$($\overrightarrow{OB}$+$\overrightarrow{OC}$)-$\frac{1}{2}$$\overrightarrow{OA}$,
又∵$\overrightarrow{MG}$=2$\overrightarrow{GN}$,
∴$\overrightarrow{MG}$=$\frac{2}{3}$$\overrightarrow{MN}$=$\frac{1}{3}$($\overrightarrow{OB}$+$\overrightarrow{OC}$-$\overrightarrow{OA}$);
∴$\overrightarrow{OG}$=$\overrightarrow{OM}$+$\overrightarrow{MG}$=$\frac{1}{2}$$\overrightarrow{OA}$+$\frac{1}{3}$($\overrightarrow{OB}$+$\overrightarrow{OC}$-$\overrightarrow{OA}$)=$\frac{1}{6}$$\overrightarrow{OA}$+$\frac{1}{3}$$\overrightarrow{OB}$+$\frac{1}{3}$$\overrightarrow{OC}$,
∴x+y+z=$\frac{1}{6}$+$\frac{1}{3}$+$\frac{1}{3}$=$\frac{5}{6}$.
故答案为:$\frac{5}{6}$.

点评 本题考查了空间向量的线性表示的应用问题,解题时应类比平面向量的线性运算,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.求函数y=$\frac{x+5}{x-2}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)两个焦点分别为F1,F2,若C上存在点P满足|PF1|:|F1F2|:|PF2|=4:3:2,则椭圆C的离心率等于(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.用数学归纳法证明1+2+3+…+(2n+1)=(n+1)(2n+1)时,从n=k到n=k+1,左边需增添的代数式是(  )
A.2k+2B.2k+3C.2k+1D.(2k+2)+(2k+3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若曲线f(x)=sinx+$\sqrt{3}$cosx的切线的斜率为k,则k的取值范围是[-2,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设数列{an}的前n项和为Sn,且Sn=n2+2n
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)证明{an}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)的导数为f′(x),且满足关系式f(x)=x2+3xf′(2)+lnx,则f′(2)的值等于(  )
A.-2B.2C.$-\frac{9}{4}$D.$\frac{9}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.生活中常用的十二进位制,如一年有12个月,时针转一周为12个小时,等等,就是逢12进1的计算制,现采用数字0~9和字母A、B共12个计数符号,这些符号与十进制的数的对应关系如下表;
十二进制0123456789AB
十进制01234567891011
例如用十二进位制表示A+B=19,照此算法在十二进位制中运算A×B=92.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=5,$\overrightarrow{a}$•$\overrightarrow{b}$=6,则$\overrightarrow{b}$在$\overrightarrow{a}$上的投影为2.

查看答案和解析>>

同步练习册答案