精英家教网 > 高中数学 > 题目详情
11.已知直线l:x-2y-5=0,圆C:x2+y2=25.
(Ⅰ)求直线与圆C的交点A,B的坐标;
(Ⅱ)求△ABC的面积.

分析 (Ⅰ)联立方程组$\left\{\begin{array}{l}{x-2y-5=0}\\{{x}^{2}+{y}^{2}=25}\end{array}\right.$,能求出直线和圆C的交点A,B的坐标.
(Ⅱ)由A(5,0),B(-3,-4),求出AB=4$\sqrt{5}$,直线AB的方程为x-2y-5=0,求出点C(0,0)到直线AB的距离h=$\sqrt{5}$,由此能求出△ABC的面积.

解答 解:(Ⅰ)联立方程组$\left\{\begin{array}{l}{x-2y-5=0}\\{{x}^{2}+{y}^{2}=25}\end{array}\right.$,
消去x,得y2+4y=0,解得y=0或y=-4,
当y=0时,x=5;当y=-4时,x=-3
所以直线和圆C的交点A,B的坐标分别为A(5,0),B(-3,-4).…(5分)
(Ⅱ)∵A(5,0),B(-3,-4),
∴AB=$\sqrt{(5+3)^{2}+(0+4)^{2}}$=4$\sqrt{5}$,
直线AB的方程为:$\frac{y}{x-5}=\frac{-4-0}{-3-5}$,即x-2y-5=0,
点C(0,0)到直线AB的距离h=$\frac{|0-0-5|}{\sqrt{1+4}}$=$\sqrt{5}$,
∴△ABC的面积S=$\frac{1}{2}×AB×h=\frac{1}{2}×4\sqrt{5}×\sqrt{5}$=10.…(10分)

点评 本题考查直线与圆的交点坐标的求法,考查三角形的面积公式的求法,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知复数z=1-2i(i是虚数单位)的共轭复数为$\overline{z}$,则$\frac{5}{z}$+$\overline{z}$2=(  )
A.2+6iB.2-4iC.-2+6iD.-3-6i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若对任意的实数x,总存在y∈[2,3],使得不等式x2+xy+y2≥k(y-1)成立,则实数k的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,已知多面体EABCDF的底面ABCD是边长为2的正方形,EA⊥底面ABCD,FD∥EA,且FD=$\frac{1}{2}$EA=1.则直线EB与平面ECF所成角的正弦值为$\frac{\sqrt{3}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.为调查大学生这个微信用户群体中每人拥有微信群的数量,现从武汉市大学生中随机抽取100位同学进行了抽样调查,结果如下:
微信群数量频数频率
0至5个00
6至10个300.3
11至15个300.3
16至20个ac
20个以上5b
合计1001
(Ⅰ)求a,b,c的值;
(Ⅱ)以这100个人的样本数据估计武汉市的总体数据且以频率估计概率,若从全市大学生(数量很大)中随机抽取3人,记X表示抽到的是微信群个数超过15个的人数,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在数列{an}中,a1=1,${a_{n+1}}=\frac{n+2}{n}{a_n}+1$,其中n=1,2,3,….
(Ⅰ) 计算a2,a3,a4,a5的值;
(Ⅱ) 根据计算结果,猜想{an}的通项公式,并用数学归纳法加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和${S_n}={n^2}-4n$,其中n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设${b_n}={2^{a_n}}+1$,求数列{bn}的前n项和Tn
(Ⅲ)若对于任意正整数n,都有$\frac{1}{{{a_1}{a_2}}}+\frac{1}{{{a_2}{a_3}}}+…+\frac{1}{{{a_n}{a_{n+1}}}}≤λ$,求实数λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.命题“?x0∈R,${x_0}^2-{x_0}+1≤0$”的否定为(  )
A.?x0∈R,${x_0}^2-{x_0}+1≤0$B.?x0∈R,${x_0}^2-{x_0}+1>0$
C.?x∈R,x2-x+1≤0D.?x∈R,x2-x+1>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)满足当x∈(1,2)时,f(x-1)=2f($\frac{1}{x-1}$),当x∈(1,3]时,f(x)=lnx,若函数g(x)=$\frac{f(x)-ax}{x-1}$在区间[$\frac{1}{3}$,1)∪(1,3]上有三个不同的零点,则实数a的取值范围为(  )
A.(0,$\frac{1}{,e}$)B.[$\frac{ln3}{3}$,$\frac{1}{,e}$)C.($\frac{ln3}{3}$,$\frac{1}{,e}$)D.(0,$\frac{ln3}{3}$)

查看答案和解析>>

同步练习册答案