分析 (Ⅰ)联立方程组$\left\{\begin{array}{l}{x-2y-5=0}\\{{x}^{2}+{y}^{2}=25}\end{array}\right.$,能求出直线和圆C的交点A,B的坐标.
(Ⅱ)由A(5,0),B(-3,-4),求出AB=4$\sqrt{5}$,直线AB的方程为x-2y-5=0,求出点C(0,0)到直线AB的距离h=$\sqrt{5}$,由此能求出△ABC的面积.
解答 解:(Ⅰ)联立方程组$\left\{\begin{array}{l}{x-2y-5=0}\\{{x}^{2}+{y}^{2}=25}\end{array}\right.$,
消去x,得y2+4y=0,解得y=0或y=-4,
当y=0时,x=5;当y=-4时,x=-3
所以直线和圆C的交点A,B的坐标分别为A(5,0),B(-3,-4).…(5分)
(Ⅱ)∵A(5,0),B(-3,-4),
∴AB=$\sqrt{(5+3)^{2}+(0+4)^{2}}$=4$\sqrt{5}$,
直线AB的方程为:$\frac{y}{x-5}=\frac{-4-0}{-3-5}$,即x-2y-5=0,
点C(0,0)到直线AB的距离h=$\frac{|0-0-5|}{\sqrt{1+4}}$=$\sqrt{5}$,
∴△ABC的面积S=$\frac{1}{2}×AB×h=\frac{1}{2}×4\sqrt{5}×\sqrt{5}$=10.…(10分)
点评 本题考查直线与圆的交点坐标的求法,考查三角形的面积公式的求法,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | 2+6i | B. | 2-4i | C. | -2+6i | D. | -3-6i |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 微信群数量 | 频数 | 频率 |
| 0至5个 | 0 | 0 |
| 6至10个 | 30 | 0.3 |
| 11至15个 | 30 | 0.3 |
| 16至20个 | a | c |
| 20个以上 | 5 | b |
| 合计 | 100 | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x0∈R,${x_0}^2-{x_0}+1≤0$ | B. | ?x0∈R,${x_0}^2-{x_0}+1>0$ | ||
| C. | ?x∈R,x2-x+1≤0 | D. | ?x∈R,x2-x+1>0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{1}{,e}$) | B. | [$\frac{ln3}{3}$,$\frac{1}{,e}$) | C. | ($\frac{ln3}{3}$,$\frac{1}{,e}$) | D. | (0,$\frac{ln3}{3}$) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com