精英家教网 > 高中数学 > 题目详情
9.以下有关命题的说法错误的是(  )
A.命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”
B.“x=1”是“x2-3x+2=0”的充分不必要条件
C.命题“在△ABC中,若A>B,则sinA>sinB”的逆命题为假命题
D.对于命题p:?x∈R,使得x2+x-1<0,则¬p:?x∈R,则x2+x+1≥0

分析 A.根据逆否命题的定义进行判断
B.根据充分条件和必要条件的定义进行判断
C.根据四种命题真假之间的关系进行判断
D.根据含有量词的命题的否定进行判断

解答 解:A.命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”,正确,
B.由x2-3x+2=0得x=1或x=2,即“x=1”是“x2-3x+2=0”的充分不必要条件,正确
C.命题“在△ABC中,若A>B,则sinA>sinB”的逆命题为“在△ABC中,若sinA>sinB,则A>B,
若sinA>sinB,由正弦定理得a>b,即等价为A>B,即逆否命题为真命题,故C判断错误.
D.命题p:?x∈R,使得x2+x-1<0,则¬p:?x∈R,则x2+x+1≥0,正确,
故选:C

点评 本题主要考查命题的真假判断,涉及四种命题的真假关系,充分条件和必要条件的判断以及含有量词的命题的否定,综合性较强.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.某班40名学生某次数学考试成绩(单位:分)的频率分布直方图如图所示.(学生成绩都在[50,100]之间)
(1)求频率分布直方图中a的值;
(2)估算该班级的平均分;
(3)若规定成绩达到80分及以上为优秀等级,从该班级40名学生中任选一人,求此人成绩为优秀等级的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,△ADP为正三角形,四边形ABCD为正方形,平面PAD⊥平面ABCD.M为平面ABCD内的一动点,且满足MP=MC.则点M在正方形ABCD内的轨迹为(O为正方形ABCD的中心)(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示,M、N、K分别是正方体ABCD-A1B1C1D1的棱AB,CD,C1D1的中点.求证:
(1)AN∥平面A1MK;
(2)MK⊥平面A1B1C.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=loga(2+x)-loga(2-x)(0<a<1).
(1)判断f(x)的奇偶性;
(2)解不等式f(x)≥loga(3x).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.华师一“长飞班”由m位同学组成,学校专门安排n位老师作为指导老师,在该班级的一次活动中,每两位同学之间相互向对方提一个问题,每位同学又向每位指导老师各提出一个问题,并且每位指导老师也向全班提出一个问题,以上所有问题互不相同,这样共提出了51个问题,则m+n=9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设函数f(x)=sin(ωx+$\frac{π}{6}$)-ω(ω>0)的导函数f′(x)的最大值为3,则f(x)的最大值为(  )
A.0B.1C.-2D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x2+xsinx+cosx,且曲线y=f(x)在点(a,f(a))处与直线y=b相切,试求函数g(x)=bx2+2x+a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知圆C:x2+y2-2x+6y+8=0
(Ⅰ)若圆C的不过原点的切线在两坐标轴上的截距相等,求切线方程
(Ⅱ)从圆C外一点P(x,y)引圆的切线PQ,点Q为切点,O为坐标原点,且满足|PQ|=|OP|,当|PQ|最小时,求点P的坐标.

查看答案和解析>>

同步练习册答案