精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=x2+xsinx+cosx,且曲线y=f(x)在点(a,f(a))处与直线y=b相切,试求函数g(x)=bx2+2x+a的最小值.

分析 由题意可得f′(a)=0,f(a)=b,联立解出a,b,即可求函数g(x)=bx2+2x+a的最小值.

解答 解:f′(x)=2x+xcosx,
∵曲线y=f(x)在点(a,f(a))处与直线y=b相切,
∴f′(a)=0,f(a)=b,
联立$\left\{\begin{array}{l}{2a+acosα=0}\\{{a}^{2}+asinα+cosα=b}\end{array}\right.$,
解得a=0,b=1,
∴g(x)=bx2+2x+a=(x+1)2-1,
∴x=-1时,g(x)的最小值为-1.

点评 熟练掌握利用导数的几何意义是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.设f(x)是定义在R上的增函数,且对任意x,都有f(-x)+f(x)=0恒成立,如果实数m,n满足不等式f(m2-6m+21)+f(n2-8n)<0,那么m2+n2的取值范围是(  )
A.(9,49)B.(13,49)C.(9,25)D.(3,7)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.以下有关命题的说法错误的是(  )
A.命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”
B.“x=1”是“x2-3x+2=0”的充分不必要条件
C.命题“在△ABC中,若A>B,则sinA>sinB”的逆命题为假命题
D.对于命题p:?x∈R,使得x2+x-1<0,则¬p:?x∈R,则x2+x+1≥0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(x)=|x+1|
(1)解不等式f(x+3)-f(x-1)≥2;
(2)若m>0,不等式2m-3≥f(mx)-mf(x)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知曲线C:y=3x4-2x3-9x2+4
①求曲线C上横坐标为1的点的切线方程;
②第①小题中切线与曲线C是否还有其它公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知一个四棱锥三视图如图所示,若此四棱锥的五个顶点在某个球面上,则该球的表面积为(  )
A.48πB.52πC.$\frac{172}{3}$πD.$\frac{196}{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若f(x)=x-elnx,0<a<e<b,则下列说法一定正确的是(  )
A.f(a)<f(b)B.f(a)>f(b)C.f(a)>f(e)D.f(e)>f(b)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设a为实数,给出命题p:关于x的不等式($\frac{1}{2}$)|x-1|≥a的解集为Ф,命题q:函数f(x)=$\sqrt{a{x}^{2}+ax+2}$的定义域为R,若命题“p∨q”为真,“p∧q为假”,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知a>0,设命题p:函数y=ax在R上单调递增;命题q:不等式x2-ax+1>0对?x∈R恒成立,若p且q为假,¬p为假,求实数a的取值范围.

查看答案和解析>>

同步练习册答案