精英家教网 > 高中数学 > 题目详情
8.已知a>0,设命题p:函数y=ax在R上单调递增;命题q:不等式x2-ax+1>0对?x∈R恒成立,若p且q为假,¬p为假,求实数a的取值范围.

分析 先解命题,再研究命题的关系,函数y=ax在R上单调递增,由指数函数的单调性解决;不等式x2-ax+1>0对?x∈R恒成立,用函数思想,又因为是对全体实数成立,可用判断式法解决,若p且q为假,¬p为假,两者是一真一假,计算可得答案.

解答 解:∵y=ax在R上单调递增,∴a>1;
又不等式x2-ax+1>0对?x∈R恒成立,
∴△<0,即a2-4<0,∴-2<a<2,
∴q:0<a<2.
而命题p且q为假,¬p为假,
∴p真,q假,则a≥2;
所以a的取值范围为:[2,+∞).

点评 本题通过逻辑关系来考查了函数单调性和不等式恒成立问题,这样考查使题目变得丰富多彩,考查面比较广.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x2+xsinx+cosx,且曲线y=f(x)在点(a,f(a))处与直线y=b相切,试求函数g(x)=bx2+2x+a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知圆C:x2+y2-2x+6y+8=0
(Ⅰ)若圆C的不过原点的切线在两坐标轴上的截距相等,求切线方程
(Ⅱ)从圆C外一点P(x,y)引圆的切线PQ,点Q为切点,O为坐标原点,且满足|PQ|=|OP|,当|PQ|最小时,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.双曲线5x2+ky2=5的一个焦点是(2,0),则其渐近线方程为(  )
A.$y=±\frac{{\sqrt{2}}}{2}x$B.$y=±\sqrt{2}x$C.$y=±\frac{{\sqrt{3}}}{3}x$D.$y=±\sqrt{3}x$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设数列{bn}的前n项和为Sn,且bn=1-2Sn;将函数y=sinx在区间(0,+∞)内的全部零点按从小到大的顺序排成数列{an}.
(1)求{bn}与{an}的通项公式;
(2)设cn=an•bn(n∈N*),Tn为数列{cn}的前n项和,若a2-2a>4Tn恒成立,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知正数a,b,c满足约束条件:$\left\{\begin{array}{l}{a≤b+c}\\{a≥\frac{1}{3}(b+c)}\end{array}\right.$,且$\left\{\begin{array}{l}{b≤a+c}\\{b≥c-2a}\end{array}\right.$,则$\frac{2c-b}{a}$的最大值为(  )
A.$\frac{9}{2}$B.$\frac{7}{2}$C.0D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列命题正确的是(  )
A.如果一条直线平行一个平面内的一条直线,那么这条直线平行于这个平面
B.如果一条直线平行一个平面,那么这条直线平行这个平面内的所有直线
C.如果一条直线垂直一个平面内的无数条直线,那么这条直线垂直这个平面
D.如果一条直线垂直一个平面,那么这条直线垂直这个平面内的所有直线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知圆C:x2+y2-8y+14=0,直线l过点(1,1)
(1)若直线l与圆C相切,求直线l的方程;
(2)当l与圆C交于不同的两点A,B,且|AB|=2时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知向量$\overrightarrow{a}$=(2cosα,2sinα),$\overrightarrow{b}$=(-sinα,cosα),$\overrightarrow{x}$=$\overrightarrow{a}$+(t2-3)$\overrightarrow{b}$,$\overrightarrow{y}$=-k$\overrightarrow{a}$+$\overrightarrow{b}$,且$\overrightarrow{x}$•$\overrightarrow{y}$=0.
(1)求函数k=f(t)的表达式;
(2)若t∈[-1,3],求f(t)的最大值与最小值.

查看答案和解析>>

同步练习册答案