| A. | $\frac{9}{2}$ | B. | $\frac{7}{2}$ | C. | 0 | D. | -1 |
分析 由题意得到关于$\frac{b}{a},\frac{c}{a}$的不等式组,令x=$\frac{b}{a}$,y=$\frac{c}{a}$换元后作出可行域,进一步求得目标函数z=$\frac{2c-b}{a}$=-x+2y的最大值.
解答
解:由$\left\{\begin{array}{l}{a≤b+c}\\{a≥\frac{1}{3}(b+c)}\end{array}\right.$,且$\left\{\begin{array}{l}{b≤a+c}\\{b≥c-2a}\end{array}\right.$,
得$\left\{\begin{array}{l}{\frac{b}{a}+\frac{c}{a}≥1}\\{\frac{b}{a}+\frac{c}{a}≤3}\\{\frac{b}{a}-\frac{c}{a}≤1}\\{\frac{b}{a}-\frac{c}{a}≥-2}\end{array}\right.$,
令x=$\frac{b}{a}$,y=$\frac{c}{a}$,
则$\left\{\begin{array}{l}{x+y≥1}\\{x+y≤3}\\{x-y≤1}\\{x-y≥-2}\end{array}\right.$,z=$\frac{2c-b}{a}$=-x+2y.
作出可行域如图:
联立$\left\{\begin{array}{l}{x-y=-2}\\{x+y=3}\end{array}\right.$,解得A($\frac{1}{2},\frac{5}{2}$),
∴z=-x+2y的最大值为$\frac{9}{2}$.
故选:A.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | 48π | B. | 52π | C. | $\frac{172}{3}$π | D. | $\frac{196}{3}$π |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=|x| | B. | y=lnx | C. | y=x${\;}^{\frac{1}{3}}$ | D. | y=x-3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com