精英家教网 > 高中数学 > 题目详情
18.函数f(x)=ax3-3x在区间(-1,1)上为单调减函数,则a的取值范围是a≤1.

分析 根据函数单调性和导数之间的关系进行求解.

解答 解:若函数y=ax3-3x在(-1,1)上是单调减函数,
则y′≤0在(-1,1)上恒成立,
即3ax2-3≤0在(-1,1)上恒成立,
即ax2≤1,
若a≤0,满足条件.
若a>0,则只要当x=1或x=-1时,满足条件即可,
此时a≤1,即0<a≤1,
综上a≤1,
故答案为:a≤1.

点评 本题主要考查函数单调性的应用,利用导数和函数单调性的关系转化为f′(x)≤0恒成立是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.下列选项中,满足焦点在y轴上且离心率为$\sqrt{3}$的双曲线的标准方程为(  )
A.$\frac{x^2}{2}-{y^2}=1$B.${y^2}-\frac{x^2}{2}=1$C.${x^2}-{\frac{y}{2}^2}=1$D.$\frac{y^2}{2}-{x^2}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某市出租车的计价标准是:4km以内(含4km)10元,超过4km且不超过18km的部分1.2元/km,超过18km的部分1.8元/km,不计等待时间的费用.
(1)如果某人乘车行驶了10km,他要付多少车费?
(2)试建立车费y(元)与行车里程x(km)的函数关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\left\{\begin{array}{l}{x-3,x≤1}\\{xlnx-kx+2k,x>1}\end{array}\right.$在R上为增函数,则实数k的取值范围为[-2,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知正数a,b,c满足约束条件:$\left\{\begin{array}{l}{a≤b+c}\\{a≥\frac{1}{3}(b+c)}\end{array}\right.$,且$\left\{\begin{array}{l}{b≤a+c}\\{b≥c-2a}\end{array}\right.$,则$\frac{2c-b}{a}$的最大值为(  )
A.$\frac{9}{2}$B.$\frac{7}{2}$C.0D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知直线l:x-y+a=0(a<0)和圆C:(x-3)2+( y-2)2=19相交于两点A、B,且|AB|=2$\sqrt{17}$.
(1)求实数a的值;
(2)设O为坐标原点,求证:OA⊥OB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在平面直角坐标系中,直线l与抛物线y2=2x相交于A,B两点,实数t为正数,若命题“如果直线l过点T(t,0),那么$\overrightarrow{OA}•\overrightarrow{OB}$=3”的逆否命题为真命题,则t=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.己知函数f(x)=ex-x2+a,x∈R,曲线y=f(x)的图象在点(0,f(0))处的切线方程为y=bx.
(I)求函数f(x)的解析式:
(Ⅱ)当x∈R时,求证;f(x)≥-x2+x;
(Ⅲ)若f(x)>kx对任意的x∈(0,+∞)恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.函数f(x)=alog2(1+x)-log2(1-x)图象关于原点对称.
(1)求实数a的值;
(2)解不等式;f-1(x)>$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案