精英家教网 > 高中数学 > 题目详情
7.己知函数f(x)=ex-x2+a,x∈R,曲线y=f(x)的图象在点(0,f(0))处的切线方程为y=bx.
(I)求函数f(x)的解析式:
(Ⅱ)当x∈R时,求证;f(x)≥-x2+x;
(Ⅲ)若f(x)>kx对任意的x∈(0,+∞)恒成立,求实数k的取值范围.

分析 (Ⅰ)利用图象在点x=0处的切线为y=bx,求出a,b,即可求函数f(x)的解析式;
(Ⅱ)令φ(x)=f(x)+x2-x=ex-x-1,确定函数的单调性,可得φ(x)min=φ(0)=0,即可证明:f(x)≥-x2+x;
(Ⅲ)f(x)>kx对任意的x∈(0,+∞)恒成立等价为$\frac{f(x)}{x}$>k对任意的x∈(0,+∞)恒成立,k<g(x)min=g(1)=e-2,即可求实数k的取值范围.

解答 (Ⅰ)f(x)=ex-x2+a,f'(x)=ex-2x.
由已知f(0)=1+a,f′(0)=1,
由在点x=0处的切线方程y=bx,可得1+a=0,b=1,
解得a=-1,b=1,
∴f(x)=ex-x2-1.
(Ⅱ)令φ(x)=f(x)+x2-x=ex-x-1,φ'(x)=ex-1,由φ'(x)=0,得x=0,
当x∈(-∞,0)时,φ'(x)<0,φ(x)单调递减;
当x∈(0,+∞)时,φ'(x)>0,φ(x)单调递增.
∴φ(x)min=φ(0)=0,从而f(x)≥-x2+x.
(Ⅲ)f(x)>kx对任意的x∈(0,+∞)恒成立即为$\frac{f(x)}{x}$>k对任意的x∈(0,+∞)恒成立,
令g(x)=$\frac{f(x)}{x}$,x>0,
∴g′(x)=$\frac{(x-1)({e}^{x}-x-1)}{{x}^{2}}$.
由y=ex-x-1的导数为ex-1,当x>0时,函数递增,当x<0时,函数递减,
可得x=1取得最小值0,
可知当x∈(0,+∞)时,ex-x-1>0恒成立,
令g'(x)>0,得x>1;g'(x)<0,得0<x<1.
∴g(x)的增区间为(1,+∞),减区间为(0,1).g(x)min=g(1)=e-2.
∴k<g(x)min=g(1)=e-2,∴实数k的取值范围为(-∞,e-2).

点评 本题主要考查了利用导数求某点处的切线和函数的单调区间、极值和最值问题,考查了函数的单调性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.下列语句中,不是命题的语句是(  )
A.12>5B.若a为正无理数,则$\sqrt{a}$也是正无理数
C.正弦函数是周期函数吗?D.π∈{1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=ax3-3x在区间(-1,1)上为单调减函数,则a的取值范围是a≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若方程x3-3x+m=0在[0,2]上只有一个解,则实数m的取值范围是(  )
A.[-2,2]B.(0,2]C.[-2,0)∪{2}D.(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若等轴双曲线经过点M(1,2),则此双曲线的半焦距为$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an},{bn}满足a1=2,b1=1,且$\left\{\begin{array}{l}{{a}_{n}=\frac{3}{4}{a}_{n-1}+\frac{1}{4}{b}_{n-1}+1}\\{{b}_{n}=\frac{1}{4}{a}_{n-1}+\frac{3}{4}{b}_{n-1}+1}\end{array}\right.$,则(a4+b4)(a5-b5)=$\frac{9}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知:⊙O的方程为x2+y2=9,点A(5,0),过点A作⊙O的切线AP,P为切点.
(1)求PA的长;
(2)在x轴上是否存在点B(异于A点),满足对⊙O上任意一点C,都有$\frac{CB}{CA}$为定值,若存在,求B点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=1g$\frac{1+x}{1-x}$
(1)求f(x)的定义域;
(2)分析函数的单调性和奇偶性
(3)求满足0<f(x)<1的x取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知tanα=$\frac{3}{4}$,cos(β-α)=-$\frac{\sqrt{2}}{10}$
(1)求sin2α-sinαcosα的值.
(2)若0<α<$\frac{π}{2}$<β<π,求β的值.

查看答案和解析>>

同步练习册答案