精英家教网 > 高中数学 > 题目详情
17.下列语句中,不是命题的语句是(  )
A.12>5B.若a为正无理数,则$\sqrt{a}$也是正无理数
C.正弦函数是周期函数吗?D.π∈{1,2,3,4}

分析 直接利用命题的定义判断选项即可.

解答 解:根据命题的定义,能够判断真假的陈述句,选项C正弦函数是周期函数吗?不是陈述句.
故选:C.

点评 本题考查命题的真假的判断,定义的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.如图,在矩形ABCD中,AB=8,BC=4,E为DC边的中点,沿AE将△ADE折起,在折起过程中,有几个正确(  )
①ED⊥平面ACD   ②CD⊥平面BED    ③BD⊥平面ACD   ④AD⊥平面BED.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列选项中,满足焦点在y轴上且离心率为$\sqrt{3}$的双曲线的标准方程为(  )
A.$\frac{x^2}{2}-{y^2}=1$B.${y^2}-\frac{x^2}{2}=1$C.${x^2}-{\frac{y}{2}^2}=1$D.$\frac{y^2}{2}-{x^2}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.方程(t-2)x2+(3-t)y2=(t-2)(3-t)(t∈R)表示双曲线的充要条件是t>3或t<2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知cos(α-β)=cosαcosβ+sinαsinβ,向量$\overrightarrow{b}$为单位向量,向量$\overrightarrow{{a}_{n}}$=(cos$\frac{nπ}{7}$,sin$\frac{nπ}{7}$)(n∈N*),则|$\overrightarrow{{a}_{1}}$+$\overrightarrow{b}$|2+|$\overrightarrow{{a}_{2}}$+$\overrightarrow{b}$|2+|$\overrightarrow{{a}_{3}}$+$\overrightarrow{b}$|2+…+|$\overrightarrow{{a}_{141}}$+$\overrightarrow{b}$|2的最大值为(  )
A.284B.285C.286D.287

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知m,n为两条不同直线,α,β为两个不同平面,给出下列命题:
①$\left\{\begin{array}{l}m⊥α\\ m⊥n\end{array}\right.⇒n∥α$②$\left\{\begin{array}{l}m⊥β\\ n⊥β\end{array}\right.⇒n∥m$③$\left\{\begin{array}{l}m⊥α\\ m⊥β\end{array}\right.⇒β∥α$④$\left\{\begin{array}{l}m?α\\ n?β\\ α∥β\end{array}\right.⇒m∥n$,
其中正确的序号是②③.(填上你认为正确的所有序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某市出租车的计价标准是:4km以内(含4km)10元,超过4km且不超过18km的部分1.2元/km,超过18km的部分1.8元/km,不计等待时间的费用.
(1)如果某人乘车行驶了10km,他要付多少车费?
(2)试建立车费y(元)与行车里程x(km)的函数关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\left\{\begin{array}{l}{x-3,x≤1}\\{xlnx-kx+2k,x>1}\end{array}\right.$在R上为增函数,则实数k的取值范围为[-2,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.己知函数f(x)=ex-x2+a,x∈R,曲线y=f(x)的图象在点(0,f(0))处的切线方程为y=bx.
(I)求函数f(x)的解析式:
(Ⅱ)当x∈R时,求证;f(x)≥-x2+x;
(Ⅲ)若f(x)>kx对任意的x∈(0,+∞)恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案