精英家教网 > 高中数学 > 题目详情
6.设命题p:实数x满足x2-(a+$\frac{1}{a}$)x+1<0,其中a>1;命题q:实数x满足x2-4x+3≤0.
(1)若a=2,且p∧q为真,求实数x的取值范围;
(2)若p是q的必要不充分条件,求实数a的取值范围.

分析 (1)命题p:实数x满足x2-(a+$\frac{1}{a}$)x+1<0,其中a>1,解得$\frac{1}{a}<x<a$,由a=2,可得$\frac{1}{2}<x<2$;命题q:实数x满足x2-4x+3≤0,解得x范围.利用p∧q为真即可得出.
(2)p是q的必要不充分条件,可得q⇒p,且p推不出q,设A=$(\frac{1}{a},a)$,B=[1,3],则B?A,即可得出.

解答 解:(1)命题p:实数x满足x2-(a+$\frac{1}{a}$)x+1<0,其中a>1,化为$(x-a)(x-\frac{1}{a})$<0,解得$\frac{1}{a}<x<a$,∵a=2,∴$\frac{1}{2}<x<2$;
命题q:实数x满足x2-4x+3≤0,解得1≤x≤3.
∵p∧q为真,∴$\left\{\begin{array}{l}{\frac{1}{2}<x<2}\\{1≤x≤3}\end{array}\right.$,解得1≤x<2.
∴实数x的取值范围是1≤x<2.
(2)p是q的必要不充分条件,∴q⇒p,且p推不出q,设A=$(\frac{1}{a},a)$,B=[1,3],
则B?A,
∴$\left\{\begin{array}{l}{\frac{1}{a}<1}\\{3<a}\end{array}\right.$,解得3<a.
∴实数a的取值范围是3<a.

点评 本题考查了不等式的解法、集合的运算性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=sinx(x∈R),则下列四个说法:
①函数g(x)=$\frac{{f}^{2}(x)-f(x)}{f(x)-1}$是奇函数;
②函数f(x)满足:对任意x1,x2∈[0,π]且x1≠x2都有f($\frac{{x}_{1}+{x}_{2}}{2}$)<$\frac{1}{2}$[f(x1)+f(x2)];
③若关于x的不等式f2(x)-f(x)+a≤0在R上有解,则实数a的取值范围是(-∞,$\frac{1}{4}$];
④若关于x的方程3-2cos2x=f(x)-a在[0,π]恰有4个不相等的解x1,x2,x3,x4;则实数a的取值范围是[-1,-$\frac{7}{8}$),且x1+x2+x3+x4=2π;
其中说法正确的序号是③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an},a1=a(a∈R),an+1=$\frac{2{a}_{n}+1}{{a}_{n}+2}$(n∈N*).
(1)若数列{an}从第二项起每一项都大于1,求实数a的取值范围;
(2)若a=-3,记Sn是数列{an}的前n项和,证明:Sn<n+$\frac{6}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知实数a∈[0,10],那么方程x2-ax+9=0有实数解的概率是$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{a•{2}^{x}+a-2}{{2}^{x}+1}$,其中a为常数.
(1)当a=1时,判断函数f(x)的奇偶性并证明;
(2)判断函数f(x)的单调性并证明;
(3)当a=1时,对于任意x∈[-2,2],不等式f(x2+m+6)+f(-2mx)>0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{{e}^{x}}{a}$-$\frac{a}{{e}^{x}}$(a>0)是定义在R上的奇函数.
(1)求a的值;
(2)设函数g(x)=1-$\frac{2a}{{2}^{x}+1}$,判断g(x)的单调性,并用定义证明你的结论;
(3)当x∈[0,ln4],求函数h(x)=e2x+meax的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.判断下列函数是否有极值,如果有极值,请求出其极值;若无极值,请说明理由.
(1)y=8x3-12x2+6x+1;
(2)y=$\frac{2x}{{x}^{2}+1}$-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设数列{an}的前n项和为Sn,已知a1=1,Sn=$\frac{{({n+1})}}{2}{a_n}$,n∈N*
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)若数列{bn}满足:对任意的正整数n,都有a1b1+a2b2+…+anbn=(n-1)•2n+1,求数列$\left\{{\frac{S_n}{b_n}}\right\}$的最大项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知一组数据2(x1-1),2(x2-1),…,2(x2015-1)的平均数为6,标准差为4,则新数据x1,x2,…,x2015的平均数与标准差分别为(  )
A.4,1B.3,2C.4,2D.3,1

查看答案和解析>>

同步练习册答案