精英家教网 > 高中数学 > 题目详情
11.(1)化ρ=cosθ-2sinθ为直角坐标形式并说明曲线的形状;
(2)化曲线F的直角坐标方程:x2+y2-5$\sqrt{{x}^{2}+{y}^{2}}$-5x=0为极坐标方程.

分析 (1)ρ=cosθ-2sinθ两边同乘以ρ,得:ρ2=ρcosθ-2ρsinθ,由ρ2=x2+y2,x=ρcosθ,y=ρsinθ,能将其直角坐标形式并说明曲线的形状.
(2)由x=ρcosθ,y=ρsinθ,能求出x2+y2-5$\sqrt{x2+y2}$-5x=0的极坐标方程.

解答 解:(1)ρ=cosθ-2sinθ两边同乘以ρ,得:ρ2=ρcosθ-2ρsinθ,
∵ρ2=x2+y2,x=ρcosθ,y=ρsinθ,
∴直线坐标方程为x2+y2=x-2y,
即x2+y2-x+2y=0,
即(x-$\frac{1}{2}$)2+(y+1)2=($\frac{\sqrt{5}}{2}$)2,表示的是以$\b\lc\(\rc\)(\a\vs4\al\co1(\frac{1}{2},-1))$为圆心,半径为$\frac{\sqrt{5}}{2}$的圆.
(2)由x=ρcosθ,y=ρsinθ得;
x2+y2-5$\sqrt{x2+y2}$-5x=0的极坐标方程为:
ρ2-5ρ-5ρcosθ=0.

点评 本题考查极坐标方程、直角坐标方程、参数方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图,四棱锥P-ABCD中,底面ABCD为矩形,E为PD的中点.
(1)求证:PB∥平面AEC;
(2)若PA⊥平面ABCD,PA=AD,求证:平面AEC⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在正四面体P-ABC中,点M是棱PC的中点,点N是线段AB上一动点,且$\overrightarrow{AN}=λ\overrightarrow{AB}$,设异面直线 NM 与 AC 所成角为α,当$\frac{1}{3}≤λ≤\frac{2}{3}$时,则cosα的取值范围是[$\frac{5\sqrt{19}}{38}$,$\frac{7\sqrt{19}}{38}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,直三棱柱ABC-A1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为5.
(1)求三棱柱ABC-A1B1C1的体积;
(2)设M是BC中点,求直线A1M与平面ABC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=mln(x+1),g(x)=$\frac{x}{x+1}({x>-1})$.
(1)当m=1时,求函数y=f(x)在点(0,f(0))处的切线方程.
(1)讨论函数F(x)=f(x)-g(x)在(-1,+∞)上的单调性;
(2)若y=f(x)与y=g(x)的图象有且仅有一条公切线,试求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知曲线C的极坐标方程为 ρ=2cosθ,直线l的极坐标方程为 ρ sin(θ+$\frac{π}{6}$)=m.
(I)求曲线C与直线l的直角坐标方程;
(II)若直线l与曲线C有且只有一个公共点,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知三棱锥A-BCD的各棱长都相等,E为BC中点,则异面直线AB与DE所成角的余弦值为(  )
A.$\frac{5\sqrt{3}}{6}$B.$\frac{\sqrt{3}}{6}$C.$\frac{\sqrt{33}}{6}$D.$\sqrt{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在极坐标系中,θ=$\frac{π}{9}$(ρ≤0)表示的图形是(  )
A.一条射线B.一条直线C.一条线段D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图1是某高三学生进入高中三年来的数学考试成绩的茎叶图,第1次到第第14次的考试成绩依次记为A1,A2,…A14,如图2是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图,那么算法流程图输出的结果是(  )
A.7B.8C.9D.10

查看答案和解析>>

同步练习册答案