精英家教网 > 高中数学 > 题目详情
12.如图,直三棱柱ABC-A1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为5.
(1)求三棱柱ABC-A1B1C1的体积;
(2)设M是BC中点,求直线A1M与平面ABC所成角的大小.

分析 (1)三棱柱ABC-A1B1C1的体积V=S△ABC×AA1=$\frac{1}{2}×AB×AC×A{A}_{1}$,由此能求出结果.
(2)连结AM,∠A1MA是直线A1M与平面ABC所成角,由此能求出直线A1M与平面ABC所成角的大小.

解答 解:(1)∵直三棱柱ABC-A1B1C1的底面为直角三角形,
两直角边AB和AC的长分别为4和2,侧棱AA1的长为5.
∴三棱柱ABC-A1B1C1的体积:
V=S△ABC×AA1
=$\frac{1}{2}×AB×AC×A{A}_{1}$
=$\frac{1}{2}×4×2×5$=20.
(2)连结AM,
∵直三棱柱ABC-A1B1C1的底面为直角三角形,
两直角边AB和AC的长分别为4和2,侧棱AA1的长为5,M是BC中点,
∴AA1⊥底面ABC,AM=$\frac{1}{2}BC=\frac{1}{2}\sqrt{16+4}$=$\sqrt{5}$,
∴∠A1MA是直线A1M与平面ABC所成角,
tan∠A1MA=$\frac{A{A}_{1}}{AM}$=$\frac{5}{\sqrt{5}}$=$\sqrt{5}$,
∴直线A1M与平面ABC所成角的大小为arctan$\sqrt{5}$.

点评 本题考查三棱柱的体积的求法,考查线面角的大小的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、函数与方程思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.设z=1-i(i是虚数单位),则在复平面内z2+$\frac{2}{z}$对应的点位于第四象限.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在复平面上,一个正方形的三个顶点对应的复数分别是-1-2i、2-i、0,那么这个正方形的第四个顶点对应的复数为(  )
A.3+iB.3-iC.1-3iD.-1+3i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=Asin(ωx+φ)(A>0,ω,0,|φ|<π),在同一周期内,当x=$\frac{π}{12}$时,f(x)取得最大值3;当x=$\frac{7}{12}$π时,f(x)取得最小值-3.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若x∈[-$\frac{π}{3}$,$\frac{π}{6}$]时,方程2f(x)+1-m=0有两个根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知集合A={1,2,3,4},集合B={3,4,5},则A∩B={3,4}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求过点A$({2,\frac{π}{4}})$且平行于极轴的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)化ρ=cosθ-2sinθ为直角坐标形式并说明曲线的形状;
(2)化曲线F的直角坐标方程:x2+y2-5$\sqrt{{x}^{2}+{y}^{2}}$-5x=0为极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系xOy和极坐标系中,极点与原点重合,极轴与x轴非负半轴重合,直线l过点(1,1),倾斜角α的正切值为-$\frac{3}{4}$,曲线C的极坐标方程为ρ=4$\sqrt{2}$sin($θ+\frac{π}{4}$).
(1)写出直线l的参数方程,并将曲线C的极坐标方程化为直角坐标方程;
(2)判断直线l与曲线C的位置关系,若直线l与曲线C相交,求直线l被曲线C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知α∈(0,$\frac{π}{2}$),tanα=$\frac{4}{3}$,则sinα=$\frac{4}{5}$,tan2α=-$\frac{24}{7}$.

查看答案和解析>>

同步练习册答案