【题目】抛物线C:y2=2px(p>0)的焦点为F,点P在C上,若PF⊥x轴,且△POF(O为坐标原点)的面积为1.
(1)求抛物线C的方程;
(2)若C上的两动点A,B(A,B在x轴异侧)满足
,且|FA|+|FB|=|AB|+2,求|AB|的值.
【答案】(1)
.(2)![]()
【解析】
(1)先解出P点坐标,再表示△POF面积为
1,解得p,进而得出抛物线方程.
(2)设直线AB方程为x=my+n,A(x1,y1),B(x2,y2),联立抛物线方程,消元x,可得含y的一元二次方程,由韦达定理可得y1+y2,y1y2,|AB|
①,因为|FA|+|FB|=|AB|+2,得x1+x2=|AB|,2m2+2n=|AB|②由①②得2m2+2n
,根据![]()
32,所以
y1y2=32,n2﹣8n﹣128=0,进而得出答案.
(1)由题知P点的横坐标为
,代入抛物线方程得,y2=2p
,解得y=p或﹣p,
所以P(
,﹣p)或(
,p),△POF面积为
1,解得p=2,
所以抛物线C方程为y2=4x,S△OFP
.
(2)设直线AB方程为x=my+n,A(x1,y1),B(x2,y2)
联立抛物线方程得y2﹣2my﹣2n=0,y1+y2=2m,y1y2=﹣2n,
|AB|
①
因为|FA|+|FB|=|AB|+2,所以x1+1+x2+1=|AB|+2,即x1+x2=|AB|,
my1+n+my2+n=|AB|,m(y1+y2)+2n=|AB|,2m2+2n=|AB|②
由①②得2m2+2n
,化简得m2=n2﹣2n,
因为![]()
32,所以x1x2+y1y2=32,所以
y1y2=32,
(y1y2)2+16y1y2﹣16×32=0,(﹣2n)2+16(﹣2n)﹣16×32=0,n2﹣8n﹣128=0,
解得n=﹣8(舍)或16,
所以|AB|=2m2+2n=2(n2﹣2n)+2n=2n2﹣2n=480.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|3x+2|.
(1)解不等式f(x)<4-|x-1|;
(2)已知m+n=1(m,n>0),若|x-a|-f(x)≤
(a>0)恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,
垂直于
所在的平面
,
为
的直径,
是弧
上的一个动点(不与端点
重合),
为
上一点,且
是线段
上的一个动点(不与端点
重合).
![]()
(1)求证:
平面
;
(2)若
是弧
的中点,
是锐角,且三棱锥
的体积为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆
的焦点为
和
,过
的直线
交
于
两点,过
作与
轴垂直的直线
,又知点
,直线
记为
,
与
交于点
.设
,已知当
时,
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)求证:无论
如何变化,点
的横坐标是定值,并求出这个定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线
的参数方程为
(
为参数),以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
的直角坐标方程及直线
的普通方程;
(2)设直线
与曲线
交于
,
两点(
点在
点左边)与直线
交于点
.求
和
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设有限数列
,定义集合
为数列
的伴随集合.
(Ⅰ)已知有限数列
和数列
.分别写出
和
的伴随集合;
(Ⅱ)已知有限等比数列
,求
的伴随集合
中各元素之和
;
(Ⅲ)已知有限等差数列
,判断
是否能同时属于
的伴随集合
,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=a(lnx
2)
1在定义域(0,2)内有两个极值点.
(1)求实数a的取值范围;
(2)设x1和x2是f(x)的两个极值点,求证:lnx1+lnx2+lna
0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学就业部从该大学2018年毕业且已就业的大学本科生中随机抽取了100人进行了问卷调查,其中有一项是他们的薪酬,经调查统计,他们的月薪在3000元到10000元之间,根据统计数据得到如下频率分布直方图:
![]()
若月薪在区间
的左侧,则认为该大学本科生属“就业不理想”的学生,学校将与本人联系,为其提供更好的指导意见.其中
,
分别是样本平均数和样本标准差,计算得
(同一组中的数据用该组区间的中点值作代表)
(1)现该校2018届本科毕业生张静的月薪为3600元,判断张静是否属于“就业不理想”的学生?用样本估计总体,从该校2018届本科毕业生随机选取一人,属于“就业不理想”的概率?
(2)为感谢同学们对调查的支持配合,该校利用分层抽样的方法从样本的前3组中抽出6人,每人赠送一份礼品,并从这6人中再抽取2人,每人赠送新款某手机1部,求获赠手机的2人中恰有1人月薪不超过5000元的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com