精英家教网 > 高中数学 > 题目详情
已知函数f(x)=-x2+ax+b2-b+1(a∈R,b∈R),对任意实数x都有f(1-x)=f(1+x)成立,若当x∈[-1,1]时,f(x)>0恒成立,则b的取值范围是(  )
A、b<-1或 b>2
B、b>2
C、-1<b<0
D、不能确定
考点:抽象函数及其应用
专题:函数的性质及应用
分析:先根据条件“对任意实数x都有f(1-x)=f(1+x)成立”得到对称轴,求出a,再研究函数f(x)在[-1,1]上的单调性,求出函数的最小值,使最小值大于零即可.
解答: 解:∵对任意实数x都有f(1-x)=f(1+x)成立
∴函数f(x)的对称轴为x=1=
a
2
,解得a=2
∵函数f(x)的对称轴为x=1,开口向下
∴函数f(x)在[-1,1]上是单调递增函数,
而f(x)>0恒成立,f(x)min=f(-1)=b2-b-2>0
解得b<-1或b>2,
故选:A
点评:本题主要考查了函数恒成立问题,二次函数在给定区间上恒成立问题必须从开口方向,对称轴,判别式及端点的函数值符号4个角度进行考虑.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一商场对每天进店人数和商品销售件数进行了统计对比,得到如下表格:(其中i=1,2,3,4,5,6,7,).
人数xi10152025303540
件数yi471215202327
(Ⅰ)以每天进店人数为横轴,每天商品销售件数为纵轴,画出散点图.
(Ⅱ)求回归直线方程.(结果保留到小数点后两位)
(参考数据:
7
i=1
xiyi=3245,
.
x
=25,
.
y
=15.43,
7
i=1
x
 
2
i
=5075,7(
.
x
2=4375,
.
x
.
y
=2695,
b
=
n
i=1
xiyi-n
.
n
.
y
n
i=1
x
2
i
-n
.
x
2
a
=
.
y
-
b
.
x

(Ⅲ)预测进店人数为80人时,商品销售的件数.(结果保留整数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
m
=(cosωx,sinωx)(ω>0),
n
=(-3,
3
),若函数f(x)=
m
n
的最小正周期是2,则f(1)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知空间四边形ABCD的每条边和对角线长都等于1,点E、F分别是AB、AD的中点,则
BF
CE
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三角形ABC是正三角形,给出下列等式:
①|
AB
+
BC
|=|
BC
+
CA
|
②|
AC
+
CB
|=|
BA
+
BC
|
③|
AB
+
AC
|=|
CA
+
CB
|
④|
AB
+
BC
+
AC
|=|
CB
+
BA
+
CA
|
其中正确的等式有
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos(2x-
π
3
)-2cos(x+
π
4
)sin(x+
π
4

(1)求函数f(x)的最小正周期和图象的对称轴;
(2)求函数f(x)在区间[-
π
12
π
2
]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

y=Asin(ωx+φ)(A>0,ω>0,-π<φ<π)的最高点为P(
π
12
,3),由这个最高点到相邻最低点间的曲线与x轴交于Q(
π
3
,0),则函数表达式为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知函数f(x)=2sin(2x+
π
6
),当x∈[
π
12
π
2
]时,求f(x)的值域;
(2)判断函数f(x)=1+|tanx|的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的奇函数.
(1)请把f(x)解析式填写完整f(x)=
x(2-x)(x≥0)
()(x<0)

(1)画出函数f(x)的简图;
(3)若g(x)=a,F(x)=f(x)-g(x),当a在
 
范围F(x)有且只有一个零点.

查看答案和解析>>

同步练习册答案