精英家教网 > 高中数学 > 题目详情
18.已知数列{an}的前n项和为Sn,且a1=1,Sn=Sn-1+an-1+2n-2.(n≥2)
(1)求数列{an}的通项公式;
(2)若xn=1+$\frac{1}{{a}_{n}}$,设数列{xn}的前n项积为Tn,求证:
①(1+$\frac{1}{{2}^{n-1}}$)<(1+$\frac{1}{{2}^{n}}$)2(n∈N*);
②Tn≤2(1+$\frac{1}{{2}^{n}}$)${\;}^{{2}^{n}-2}$(n∈N*).

分析 (1)由Sn=Sn-1+an-1+2n-2,(n≥2),可得an-an-1=2n-2,再利用“累加求和”与等比数列的前n项和公式即可得出;
(2)①把(1+$\frac{1}{{2}^{n}}$)2展开即可证明;
②由①可得:1+1<(1+$\frac{1}{2}$)2,1+$\frac{1}{2}$<(1+$\frac{1}{{2}^{2}}$)2,…,(1+$\frac{1}{{2}^{n-1}}$)<(1+$\frac{1}{{2}^{n}}$)2(n∈N*),再利用不等式的性质即可得出.

解答 解:(1)∵Sn=Sn-1+an-1+2n-2,(n≥2),
∴an-an-1=2n-2
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=2n-2+2n-3+…+1+1
=$\frac{1-{2}^{n-1}}{1-2}$+1=2n-1
(2)证明:①(1+$\frac{1}{{2}^{n}}$)2=1+$\frac{1}{{2}^{n-1}}$+$\frac{1}{{2}^{2n}}$>1+$\frac{1}{{2}^{n-1}}$,
∴(1+$\frac{1}{{2}^{n-1}}$)<(1+$\frac{1}{{2}^{n}}$)2(n∈N*);
②由①可得:1+1<(1+$\frac{1}{2}$)2,1+$\frac{1}{2}$<(1+$\frac{1}{{2}^{2}}$)2,…,(1+$\frac{1}{{2}^{n-1}}$)<(1+$\frac{1}{{2}^{n}}$)2(n∈N*);
∴Tn≤(1+$\frac{1}{2}$)2•(1+$\frac{1}{{2}^{2}}$)2•…•(1+$\frac{1}{{2}^{n}}$)2(1+$\frac{1}{{2}^{n}}$)
≤2•$(1+\frac{1}{{2}^{2}})^{{2}^{2}}$•…•(1+$\frac{1}{{2}^{n}}$)2
≤2•(1+$\frac{1}{{2}^{n}}$)${\;}^{{2}^{n}-2}$(n∈N*).

点评 本题考查了递推关系的应用、“累加求和”与等比数列的前n项和公式、不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.设△ABC的内角A,B,C的对边分别为a,b,c,且$a=2,cosC=-\frac{1}{4}$,3sinA=2sinB
(1)求边b和边c;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设x,y满足约束条件$\left\{\begin{array}{l}{x-y≤0}\\{x+2y-6≤0}\\{2x+y-3≥0}\end{array}\right.$,目标函数z=ax-y仅在(0,3)取得最大值,则a的取值范围是(  )
A.($\frac{1}{2}$,+∞)B.(-2,-$\frac{1}{2}$)C.(-∞,-$\frac{1}{2}$)D.(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.下列有关命题的说法正确的有①②④(填写序号)
①命题“若x2-3x+2=0,则xx=1”的逆否命题为:“若x≠1,则x2-3x+2≠0”
②“x=1”是“x2-3x+2=0”的充分不必要条件
③若p∧q为假命题,则p.q均为假命题
④对于命题p:?x∈R使得x2+x+1<0,则¬p:?x∈R,均有x2+x+1≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列命题中正确的是(  )
A.有两个面平行,其余各面都是平行四边形的几何体叫棱柱
B.有一个面是多边形,其余各面都是三角形的几何体叫棱锥
C.由五个面围成的多面体一定是四棱锥
D.棱台各侧棱的延长线交于一点

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知公差为d(0<d<1)的等差数列{an}满足sina6cosa4-cosa6sina4=1,且a2=$\frac{π}{2}$,则d=$\frac{π}{4}$,an=$\frac{nπ}{4}$,sina7=-$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数g(x)=sinx•log2($\sqrt{{x}^{2}+2t}$+x)为偶函数,则t=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.以下茎叶图记录了在高三一诊模拟考试中,A,B两个学校的各4个班的优生人数,其中有两个数据模糊不清,在图中用x,y表示,统计显示,A,B两个学校的优生人数的平均值相等,A校优生人数的方差比B校优生人数的方差小1.
(Ⅰ)求实数x,y的值;
(Ⅱ)从A,B两校中各随机抽取一个班级,记这两个班的优生人数分别为m,n,求随机变量ξ=|m-n|的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.直线l1:x+(a+5)y-6=0与直线l2:(a-3)x+y+7=0互相垂直,则a等于(  )
A.-$\frac{1}{3}$B.-1C.1D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案