精英家教网 > 高中数学 > 题目详情
2.已知三棱柱ABC-A1B1C1的六个顶点都在球O的球面上,且侧棱AA1⊥平面ABC,若AB=AC=3,∠BAC=$\frac{2π}{3},A{A_1}$=8,则球的表面积为(  )
A.36πB.64πC.100πD.104π

分析 求出BC,可得△ABC外接圆的半径,从而可求该三棱柱的外接球的半径,即可求出三棱柱的外接球表面积.

解答 解:∵AB=AC=3,∠BAC=120°,
∴BC$\sqrt{9+9-2×3×3×(-\frac{1}{2})}$=3$\sqrt{3}$,
∴三角形ABC的外接圆直径2r=$\frac{3\sqrt{3}}{\frac{\sqrt{3}}{2}}$=6,
∴r=3,
∵AA1⊥平面ABC,AA1=8,
∴该三棱柱的外接球的半径R=5,
∴该三棱柱的外接球的表面积为S=4πR2=4π×52=100π.
故选C.

点评 本题考查三棱柱的外接球表面积,考查直线和平面的位置关系,确定三棱柱的外接球的半径是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.如图,曲线C由左半椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0,x≤0)和圆N:(x-2)2+y2=5在y轴右侧的部分连接而成,A,B是M与N的公共点,点P,Q(均异于点A,B)分别是M,N上的动点.
(1)若|PQ|的最大值为4+$\sqrt{5}$,求半椭圆M的方程;
(2)若直线PQ过点A,且$\overrightarrow{AQ}$+$\overrightarrow{AP}$=$\overrightarrow{0}$,$\overrightarrow{BP}$⊥$\overrightarrow{BQ}$,求半椭圆M的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知实数x,y满足不等式组$\left\{\begin{array}{l}{x≥1}\\{y≥1}\\{x+y≤3}\end{array}\right.$,则2x+y的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{x^2}{4}+{y^2}=1$,点P是椭圆C上任意一点,且点M满足$\left\{\begin{array}{l}{x_M}=2λ{x_P}\\{y_M}=λ{y_P}\end{array}\right.$(λ>1,λ是常数).当点P在椭圆C上运动时,点M形成的曲线为Cλ
(Ⅰ)求曲线Cλ的轨迹方程;
(Ⅱ)过曲线Cλ上点M做椭圆C的两条切线MA和MB,切点分别为A,B.
①若切点A的坐标为(x1,y1),求切线MA的方程;
②当点M运动时,是否存在定圆恒与直线AB相切?若存在,求圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在四棱锥P-ABCD中,AD∥BC,AD=AB=DC=$\frac{1}{2}$BC=1,E是PC的中点,面PAC⊥面ABCD.
(Ⅰ)证明:ED∥面PAB;
(Ⅱ)若PC=2,PA=$\sqrt{3}$,求二面角A-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥BD,PA=AC=2AD=4,AB=BC=2$\sqrt{5}$,M,N,E分别为PD,PB,CD的中点.
(1)求证:平面MBE⊥平面PAC;
(2)求二面角M-AC-N的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合M={x|$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1},N={y|$\frac{x}{3}$+$\frac{y}{2}$=1},M∩N=(  )
A.B.{(3,0),(0,2)}C.[一2,2]D.[一3,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某宣传部门网站为弘扬社会主义思想文化,开展了以核心价值观为主题的系列宣传活动,并以“社会主义核心价值观”作为关键词便于网民搜索.此后,该网站的点击量每月都比上月增长50%,那么4个月后,该网站的点击量和原来相比,增长为原来的(  )
A.2倍以上,但不超过3倍B.3倍以上,但不超过4倍
C.4倍以上,但不超过5倍D.5倍以上,但不超过6倍

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,已知三棱柱ABC-A1B1C1的底面ABC是等边三角形,且AA1⊥底面ABC,M为AA1的中点,N在线段AB上,且AN=2NB,点P在CC1上.
(1)证明:平面BMC1⊥平面BCC1B1
(2)当$\frac{CP}{P{C}_{1}}$为何值时,有PN∥平面BMC1

查看答案和解析>>

同步练习册答案