精英家教网 > 高中数学 > 题目详情
9.已知中心在原点的椭圆C的右焦点为($\sqrt{3}$,0),离心率e=$\frac{\sqrt{3}}{2}$
(1)求椭圆C的标准方程;
(2)设过椭圆左顶点A的直线l交椭圆于另一点B,且AB中点横坐标为$-\frac{8}{5}$,求l的方程.

分析 (1)设椭圆方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),由题意可得c=$\sqrt{3}$,e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,结合a,b,c的关系,解得a=2,b=1,进而得到椭圆方程;
(2)设直线l:y=k(x+2),代入椭圆方程,消去y,运用韦达定理和中点坐标公式,即可得到k,进而得到直线l的方程.

解答 解:(1)设椭圆方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),
由题意可得c=$\sqrt{3}$,e=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,
解得a=2,b=$\sqrt{{a}^{2}-{c}^{2}}$=1,
即有椭圆方程为$\frac{{x}^{2}}{4}$+y2=1;
(2)A(-2,0),设直线l:y=k(x+2),
代入椭圆方程可得,(1+4k2)x2+16k2x+16k2-4=0,
则-2+xB=-$\frac{16{k}^{2}}{1+4{k}^{2}}$,
由AB中点横坐标为$-\frac{8}{5}$,可得-$\frac{16{k}^{2}}{1+4{k}^{2}}$=-$\frac{16}{5}$,
解得k=±1,
检验判别式(16k22-4(1+4k2)(16k2-4)=16>0,成立.
则有直线l的方程为y=x+2或y=-x-2.

点评 本题考查椭圆的方程和性质,主要考查椭圆的离心率和方程的运用,联立直线方程,运用韦达定理和中点坐标公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.在△ABC中,内角A,B,C的对边分别为a,b,c,且a>c.已知$\overrightarrow{BA}•\overrightarrow{BC}$=2,tanB=2$\sqrt{2}$,b=3.
(Ⅰ)求a,c的值;
(Ⅱ)求cos(B-C)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=lnx+ax2+bx(x>0,a∈R,b∈R),e=2.718…,为自然对数的底数.
(Ⅰ)若曲线y=f(x)在(1,f(1))处的切线方程为x-2y-2=0,求函数f(x)的解析式;
(Ⅱ)当b=1时,若f(x)的极大值大于零?求出a的取值范围;
(Ⅲ)证明命题“已知h(x)在其定义域D上是单调递增函数,若?x0∈D,满足h(h(x0))=x0,则h(x0)=x0”是真命题,并探索:当a>0,b=1时,函数y=f(f(x))-x是否存在大于1的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.椐统计,某食品企业一个月内被消费者投诉的次数为0,1,2的概率分别为0.3,0.5,0.2.
(Ⅰ)求该企业在一个月内共被消费者投诉不超过1次的概率;
(Ⅱ)假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=log4(2x+3-x2).
(1)求函数f(x)的定义域及单调区间;
(2)求函数f(x)的最大值及取得最大值的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知点A(1,4),B(4,1),直线L:y=ax+2与线段AB相交于P,则a的范围[$-\frac{1}{4}$,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.一只小狗在如图所示的方砖上走来走去,求最终停在阴影方砖上的概率为(  )
A.$\frac{3}{10}$B.$\frac{1}{5}$C.$\frac{1}{3}$D.$\frac{5}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.i+i2+i3+…+i2015=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(文科)已知数列{an}满足:a1=1,a2=$\frac{1}{2}$,且[3+(-1)n]an+2-2an+2[(-1)n-1]=0,n∈N*
(Ⅰ)求a3,a4,a5,a6的值及数列{an}的通项公式;
(Ⅱ)设bn=a2n-1•a2n,求数列{bn}的前n项和Sn

查看答案和解析>>

同步练习册答案