15£®ÒÑÖª$\overrightarrow{e}$1£¬$\overrightarrow{e}$2ÊǼнÇΪ120¡ãµÄÁ½¸öµ¥Î»ÏòÁ¿£®Ôò$\overrightarrow{a}$=2$\overrightarrow{e}$1+$\overrightarrow{e}$2ºÍ$\overrightarrow{b}$=$\overrightarrow{e}$2-2$\overrightarrow{e}$1µÄ¼Ð½ÇµÄÓàÏÒÖµÊÇ£¨¡¡¡¡£©
A£®-$\frac{{\sqrt{21}}}{7}$B£®$\frac{{\sqrt{21}}}{7}$C£®$\frac{{\sqrt{21}}}{14}$D£®-$\frac{3}{5}$

·ÖÎö ¸ù¾ÝÒÑÖª£¬Çó³öÏòÁ¿$\overrightarrow{a}$£¬$\overrightarrow{b}$µÄÄ££¬¼°$\overrightarrow{a}$•$\overrightarrow{b}$£¬´úÈëÏòÁ¿¼Ð½Ç¹«Ê½£¬¿ÉµÃ´ð°¸£®

½â´ð ½â£º¡ß$\overrightarrow{e}$1£¬$\overrightarrow{e}$2ÊǼнÇΪ120¡ãµÄÁ½¸öµ¥Î»ÏòÁ¿£®
¡à$\overrightarrow{e}$12=$\overrightarrow{e}$22=|$\overrightarrow{e}$1|2=|$\overrightarrow{e}$2|2=1£¬
$\overrightarrow{e}$1•$\overrightarrow{e}$2=-$\frac{1}{2}$£¬
¹Ê|$\overrightarrow{a}$|2=4$\overrightarrow{e}$12+$\overrightarrow{e}$22+4$\overrightarrow{e}$1•$\overrightarrow{e}$2=3£¬¼´|$\overrightarrow{a}$|=$\sqrt{3}$£¬
|$\overrightarrow{b}$|2=4$\overrightarrow{e}$12+$\overrightarrow{e}$22-4$\overrightarrow{e}$1•$\overrightarrow{e}$2=7£¬¼´|$\overrightarrow{b}$|=$\sqrt{7}$£¬
$\overrightarrow{a}$•$\overrightarrow{b}$=-4$\overrightarrow{e}$12+$\overrightarrow{e}$22=-3£¬
¹Ê$\overrightarrow{a}$=2$\overrightarrow{e}$1+$\overrightarrow{e}$2ºÍ$\overrightarrow{b}$=$\overrightarrow{e}$2-2$\overrightarrow{e}$1µÄ¼Ð½Ç¦ÈµÄÓàÏÒÖµ£¬
cos¦È=$\frac{-3}{\sqrt{3}•\sqrt{7}}$=-$\frac{{\sqrt{21}}}{7}$£¬
¹ÊÑ¡£ºA

µãÆÀ ±¾Ì⿼²éµÄ֪ʶµãÊÇÏòÁ¿µÄÊýÁ¿»ýÔËË㣬ÏòÁ¿µÄÄ££¬ÏòÁ¿¼Ð½Ç¹«Ê½£¬ÄѶÈÖеµ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ºã¹ý¶¨µãµÄÖ±Ïßmx-ny-m=0ÓëÅ×ÎïÏßy2=4x½»ÓÚA£¬B£¬Èôm£¬nÊÇ´Ó¼¯ºÏ{-3£¬-2£¬-1£¬0£¬1£¬2£¬3}ÖÐÈ¡³öµÄÁ½¸ö²»Í¬ÔªËØ£¬Ôòʹ|AB|£¼8µÄ²»Í¬È¡·¨ÓУ¨¡¡¡¡£©
A£®30ÖÖB£®24ÖÖC£®18ÖÖD£®12ÖÖ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÇúÏß$f£¨x£©=\frac{cosx}{x}$ÔÚµã$£¨{\frac{¦Ð}{2}£¬0}£©$´¦µÄÇÐÏß·½³ÌΪ£¨¡¡¡¡£©
A£®2x+¦Ðy-¦Ð=0B£®2x-¦Ðy-¦Ð=0C£®$x-¦Ðy-\frac{¦Ð}{2}=0$D£®$x+¦Ðy-\frac{¦Ð}{2}=0$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®É躯Êýf£¨x£©=sin£¨¦Øx+$\frac{¦Ð}{3}$£©+$\frac{{\sqrt{3}}}{2}$+a£¨ÆäÖЦأ¾0£¬a¡ÊR£©£¬f£¨x£©µÄͼÏóÔÚyÖáÓÒ²àµÄµÚÒ»¸ö×î¸ßµãµÄºá×ø±êÊÇ$\frac{¦Ð}{6}$£®ÇÒf£¨x£©¹ýµã£¨$\frac{5¦Ð}{6}$£¬$\sqrt{3}$£©£®
£¨1£©Çó¦ØºÍaµÄÖµ£»
£¨2£©Éèg£¨x£©=f£¨2x+$\frac{¦Ð}{3}$£©-$\sqrt{3}$£¬Çóg£¨x£©µÄÁãµã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®8${\;}^{\frac{2}{3}}$-lg100µÄֵΪ£¨¡¡¡¡£©
A£®4B£®2C£®1D£®$\frac{2}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªf£¨x£©=x2+ax+a£¨x¡ÊR£©£¬g£¨x£©=ex£¬h£¨x£©=$\frac{f£¨x£©}{g£¨x£©}$£®
£¨1£©µ±a=1ʱ£¬Çóh£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©Çóh£¨x£©ÔÚx¡Ê[1£¬+¡Þ£©ÊǵݼõµÄ£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÈçͼËùʾ£¬ÔÚÖ±ËÄÀâÖùABCD-A1B1C1D1ÖУ¬DB=BC£¬DB¡ÍAC£¬µãMÊÇÀâBB1ÉÏÒ»µã£®
£¨1£©ÇóÖ¤£ºB1D1¡ÎÆ½ÃæA1BD£»
£¨2£©ÇóÖ¤£ºMD¡ÍAC£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®¶ÔÓÚ0¡Üm¡Ü4ÖеÄÈÎÒâm£¬²»µÈʽx2+mx£¾4x+m-3ºã³ÉÁ¢£¬ÔòxµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®-1¡Üx¡Ü3B£®x¡Ü-1C£®x¡Ý3D£®x£¼-1»òx£¾3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Èôij¿Õ¼ä¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýÊÇ£¨¡¡¡¡£©
A£®20-2¦ÐB£®40-$\frac{2}{3}$¦ÐC£®20-$\frac{2}{3}$¦ÐD£®20-$\frac{4}{3}$¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸