精英家教网 > 高中数学 > 题目详情
1.已知点F是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点,点E是该双曲线的右顶点,过点F且垂直于x轴的直线与双曲线交于A,B两点,若△ABE是钝角三角形,则该双曲线的离心率的取值范围是(  )
A.(1,$\sqrt{2}$)B.($\sqrt{2}$,+∞)C.(1,2)D.(2,+∞)

分析 利用双曲线的对称性可得∠AEB是钝角,得到AF>EF,求出AF,CF得到关于a,b,c的不等式,求出离心率的范围.

解答 解:∵双曲线关于x轴对称,且直线AB垂直x轴,
∴∠AEF=∠BEF,
∵△ABE是钝角三角形,
∴∠AEB是钝角,
即有AF>EF,
∵F为左焦点,过F且垂直于x轴的直线与双曲线交于A、B两点,
∴AF=$\frac{{b}^{2}}{a}$,
∵EF=a+c
∴$\frac{{b}^{2}}{a}$>a+c,即c2-ac-2a2>0,
由e=$\frac{c}{a}$,可得e2-e-2>0,
解得e>2或e<-1,(舍去),
则双曲线的离心率的范围是(2,+∞).
故选:D.

点评 本题考查双曲线的对称性、双曲线的三参数关系:c2=a2+b2,双曲线的离心率问题就是研究三参数a,b,c的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{x^2}{a^2}}+\frac{y^2}{{^{b^2}}}$+$\frac{{y}^{2}}{{b}^{2}}$=1,(a>b>0)的离心率为$\frac{{\sqrt{3}}}{2}$,且经过点P(0,-1).
(1)求椭圆的方程;
(2)如果过点Q(0,$\frac{3}{5}$)的直线与椭圆交于A,B两点(A,B点与P点不重合).
①求$\overrightarrow{PA}$•$\overrightarrow{PB}$的值;
②当△PAB为等腰直角三角形时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.△ABC中,已知:AB=2,BC=1,CA=$\sqrt{3}$,分别在边AB,BC,CA上取点D,E,F,使△DEF是等边三角形(如图),设∠FEC=α,问当sinα=$\frac{2\sqrt{7}}{7}$时,△DEF的边长最短.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知f(x)是周期为4的奇函数,x∈[0,2]时,f(x)=$\sqrt{1-(x-1)^{2}}$.若方程f(x)-tx=0恰好有5个实根,则正实数t等于(  )
A.$\frac{1}{5}$B.$\frac{\sqrt{6}}{12}$C.$\frac{\sqrt{5}}{5}$D.$\frac{\sqrt{6}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知向量$\vec a=(3,4)$,$\vec b=(2,x)$.若$\vec a•\vec b=2|{\vec a}$|,则实数x等于(  )
A.-1B.-2C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一个焦点F与抛物线C2:y2=2px(p>0)的焦点相同,它们交于A,B两点,且直线AB过点F,则双曲线C1的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{2}+1$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若φ是锐角,试比较cos(sinφ),sin(cosφ),cosφ的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}满足a1=1,an•an+1=an2+an+2(n∈N*).
(1)证明:an+1>an
(2)证明:当n≥2时,n+2≤an≤$\frac{3}{2}$n+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知实数x,y满足$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≥0}\\{4x-y-4≤0}\end{array}\right.$,则z=3x-y的取值范围为(  )
A.[0,$\frac{12}{5}$]B.[0,2]C.[2,$\frac{12}{5}$]D.[2,$\frac{8}{3}$]

查看答案和解析>>

同步练习册答案