精英家教网 > 高中数学 > 题目详情
11.已知实数x,y满足$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≥0}\\{4x-y-4≤0}\end{array}\right.$,则z=3x-y的取值范围为(  )
A.[0,$\frac{12}{5}$]B.[0,2]C.[2,$\frac{12}{5}$]D.[2,$\frac{8}{3}$]

分析 先画出可行域,再把目标函数变形为直线的斜截式,根据其在y轴上的截距即可求之.

解答 解:画出$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≥0}\\{4x-y-4≤0}\end{array}\right.$的可行域,如图所示
$\left\{\begin{array}{l}{x-y+2=0}\\{x+y-4=0}\end{array}\right.$解得A(1,3)、由$\left\{\begin{array}{l}{x+y-4=0}\\{4x-y-4=0}\end{array}\right.$解得B($\frac{8}{5}$,$\frac{12}{5}$),
把z=3x-y变形为y=3x-z,则直线经过点A时z取得最小值;经过点B时z取得最大值.
所以zmin=3×1-3=0,zmax=3×$\frac{8}{5}$-$\frac{12}{5}$=$\frac{12}{5}$.
即z的取值范围是[0,$\frac{12}{5}$].
故选:A.

点评 本题考查利用线性规划求函数的最值.利用数形结合是解决线性规划题目的常用方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知点F是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点,点E是该双曲线的右顶点,过点F且垂直于x轴的直线与双曲线交于A,B两点,若△ABE是钝角三角形,则该双曲线的离心率的取值范围是(  )
A.(1,$\sqrt{2}$)B.($\sqrt{2}$,+∞)C.(1,2)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若二次函数y=x2+tx+t+3的函数值恒大于0,则实数t的取值范围是[-2,6].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知点A(x1,y1),B(x2,y2),分别求A,B关于点M(x0,y0)的中心对称点A′,B′的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=mx-$\frac{m}{x}$,g(x)=3lnx.
(1)当m=4时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)若x∈(1,$\sqrt{e}$](e是自然对数的底数)时,不等式f(x)-g(x)<3恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.一根木料长为42米,要做一个如图的窗框,已知上框架与下框架的高的比为1:2,求:
①窗框面积S与x的函数关系式;
②上、下框架的高各为多少时,能使光线通过的窗框面积最大;
③窗框最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在直角坐标系中,作出下列各角,在0°~360°范围内找出与其终边相同的角,并判定它是第几象限角.
(1)360°;(2)720°;(3)2012°;(4)-120°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,内角A、B、C所对的边分别为a,b,c,已知c=$\sqrt{3}$,C=$\frac{π}{3}$,sinA=$\frac{4}{5}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年重庆市高二上学期入学考试数学试卷(解析版) 题型:解答题

文科做:数列中,且满足

(I)求数列的通项公式;

(II)设,求

(III)设=,是否存在最大的整数,使得对任意,均有成立?若存在,求出的值;若不存在,请说明理由。

查看答案和解析>>

同步练习册答案