分析 (1)根据偶函数的定义即可证明,并化为分段函数,
(2)描点作图即可,
(3)直接由图象可得答案.
解答
解:(1)函数的定义域为R,关于坐标原点对称,
且f(-x)=(-x)2-4|-x|+3=x2-4|x|+3
=f(x)
故函数为偶函数;
$f(x)={x^2}-4|x|+3=\left\{\begin{array}{l}{x^2}-4x+3,x>0\\{x^2}+4x+3,x<0\end{array}\right.$;
(2)如图,
(3)由图象可知单调增区间为(-2,0),[2,+∞),
单调减区间为(-∞,-2),[0,2].
值域为[-1,+∞).
点评 本题考查了函数的奇偶性和函数图象的画法和识别,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{15}{4}$ | B. | $\frac{15}{2}$ | C. | 15 | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,1) | B. | (-∞,-1] | C. | (1,+∞) | D. | [1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1,+∞) | B. | [0,+∞) | C. | (1,+∞) | D. | (0,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com