精英家教网 > 高中数学 > 题目详情
已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线
x2
a
-y2=1的左顶点为A,若双曲线的一条渐近线与直线AM平行,则实数a的值是(  )
A、
1
9
B、
1
25
C、
1
5
D、
1
3
考点:双曲线的简单性质,抛物线的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:求得抛物线的准线方程,再由抛物线的定义可得p=8,求出M的坐标,求得双曲线的左顶点和渐近线方程,再由斜率公式,结合两直线平行的条件:斜率相等,计算即可得到a的值.
解答: 解:抛物线y2=2px(p>0)的准线方程为x=-
p
2

由抛物线的定义可得5=1+
p
2
,可得p=8,
即有y2=16x,M(1,4),
双曲线
x2
a
-y2=1的左顶点为A(-
a
,0),
渐近线方程为y=±
1
a
x,
直线AM的斜率为
4
1+
a

由双曲线的一条渐近线与直线AM平行,
可得
1
a
=
4
1+
a
,解得a=
1
9

故选A.
点评:本题考查抛物线和双曲线的定义、方程和性质,主要考查抛物线的定义和渐近线方程,运用两直线平行的条件是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)在定义域R上不是常函数,且f(x)满足条件,对任何x∈R,都有f(x+2)=f(2-x),f(1+x)=-f(x),则f(x)是(  )
A、奇函数B、偶函数
C、非奇非偶函数D、既奇又偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px的准线与双曲线
x2
a2
-
y2
3a2
=1(a>0)的两条渐近线分别交于M,N两点,O为坐标原点,△MON的面积为
3
,点P(x,y)为抛物线C上的动点,又点A(-1,0),F为抛物线的焦点,则
|PF|
|PA|
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
是夹角为60°的两个单位向量,向量
a
b
(λ∈R)与向量
a
-2
b
垂直,则实数λ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知凼数f(x)=x2-ax+2
(1)若f(x)>0解集为(-∞,1)∪(2,+∞),求a 的值;
(2)当x>0时,求
f(x)
x
 的最小值;
(3)若f (x)>1,解集为R,求实数a 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数集A={a1,a2,a3,a4,a5}(0≤a1<a2<a3<a4<a5)具有性质p:对任意i,j∈Z,其中1≤i≤j≤5,均有(aj-ai)∈A,若a5=60,则a3=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=5
3
cos2x+
3
sin2x-4sinxcosx
(1)求f(
12

(2)若f(α)=5
3
,α∈(
π
2
,π),求角α.

查看答案和解析>>

科目:高中数学 来源: 题型:

设无穷数列{an},如果存在常数A,对于任意给定的正数?(无论多小),总存在正整数N,使得n>N时,恒有|an-A|<?成立,就称数列{an}的极限为A,则四个无穷数列:
①{(-1)n×2};
②{n};
③{1+
1
2
+
1
22
+
1
23
+…+
1
2n-1
};
④{
2n+1
n
},
其极限为2共有(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三边分别为4,5,6,则△ABC的面积为(  )
A、
15
7
2
B、
15
7
4
C、
15
7
8
D、
15
7
16

查看答案和解析>>

同步练习册答案