精英家教网 > 高中数学 > 题目详情
函数f(x)=5
3
cos2x+
3
sin2x-4sinxcosx
(1)求f(
12

(2)若f(α)=5
3
,α∈(
π
2
,π),求角α.
考点:三角函数中的恒等变换应用,函数的值
专题:三角函数的求值,三角函数的图像与性质
分析:(1)首先通过三角恒等变换把三角函数的关系式变形成余弦型函数,进一步求出函数的值.
(2)利用(1)的结论,建立关于α的三角方程,通过解三角方程求出角α的值.
解答: 解:(1)f(x)=5
3
cos2x+
3
sin2x-4sinxcosx
=5
3
cos2x+
3
(1-cos2x)-2sin2x

=4
3
cos2x
-2sin2x+
3

=4
3
cos2x+1
2
-2sin2x+
3

=2
3
cos2x-2sin2x+3
3

=4cos(2x+
π
6
)+3
3

所以:f(
12
)=4cos(
10π
12
+
π
6
)+3
3
=3
3
-4

(2)由(1)得:f(x)=4cos(2x+
π
6
)+3
3

则:f(α)=4cos(2α+
π
6
)+3
3
=5
3

所以:4cos(2α+
π
6
)=2
3

进一步求得:cos(2α+
π
6
)=
3
2

又α∈(
π
2
,π),
所以:2α+
π
6
=2kπ±
π
6
(k∈Z)
解得:当k=1时,α=
6
点评:本题考查的知识要点:三角函数关系式的恒等变换,及三角方程的解法,属于基础题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,网格纸上小方格的边长为1(表示1cm),图中粗线和虚线是某零件的三视图,该零件是由一个底面半径为4cm,高为3cm的圆锥毛坯切割得到,则毛坯表面积与切削得的零件表面积的比值为(  )
A、
3
10
B、
5
10
C、
7
10
D、
9
10

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(3cosx,
3
sinx),
n
=(2cosx,-2cosx),函数f(x)=
m
n

(1)求f(x)的最小正周期和对称轴方程;
(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f(B)=0且b=2,cosA=
4
5
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线
x2
a
-y2=1的左顶点为A,若双曲线的一条渐近线与直线AM平行,则实数a的值是(  )
A、
1
9
B、
1
25
C、
1
5
D、
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
b
满足|
a
|=5,|
b
|≤1,且|
a
-4
b
|≤
21
,则
a
b
的最小值为(  )
A、
25-5
21
4
B、-5
C、
5
2
D、-
21
16

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知△ABC中,A=90°,B=30°,点P在BC上运动且满足
CP
=λ
CB
,当
PA
PC
取到最小值时,λ的值为(  )
A、
1
4
B、
1
5
C、
1
6
D、
1
8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知递增的等比数列{an}前三项之积为8,且这三项分别加上1、2、2后又成等差数列.
(1)求等比数列{an}的通项公式;
(2)若不等式an2+2nan-k≥0对一切n∈N*恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线y=
1
x
在x=a处的切线的倾角为
4
,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|cosθ|=
3
5
,且
2
<θ<3π,求sin
θ
2
、cos
θ
2
、tan
θ
2
的值.

查看答案和解析>>

同步练习册答案