精英家教网 > 高中数学 > 题目详情

已知函数f(x)=axlnx(a≠0).
(Ⅰ)求函数f(x)的单调区间和最值;
(Ⅱ)若m>0,n>0,a>0,证明:f(m)+f(n)≥f(m+n)-a(m+n)ln2.

(Ⅰ)∵f'(x)=alnx+a(x>0),
当a>0时,令f'(x)≥0,即lnx≥-1=lne-1
.,∴
同理,令f'(x)≤0,可得
∴f(x)单调递增区间为,单调递减区间为
由此可知.无最大值.
当a<0时,令f'(x)≥0,即lnx≤-1=lne-1.∴.,∴
同理,令f'(x)≤0可得
∴f(x)单调递增区间为,单调递减区间为
由此可知.此时无最小值.
(Ⅱ)不妨设m≥n>0,令n=x,


,∴
∴g'(x)≤0,∴g(x)是减函数,
∵m≥x>0,∴g(x)≥g(m)=0∴,即得证.
分析:(Ⅰ)f'(x)=alnx+a(x>0),当a>0时f(x)单调递增区间为,单调递减区间为.当a<0时f(x)单调递增区间为,单调递减区间为
(Ⅱ)可得可以证得g'(x)≤0,∴g(x)是减函数,
∴g(x)≥g(m)=0
点评:解决此类问题的关键是先求函数的导数讨论其中的参数得到函数的单调性进而得到函数的最值,证明不等式一般是抽象出一个新的函数利用导函数的单调性进行证明,研究函数的单调性、最值、证明不等式是解答题考查的一个重点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案