精英家教网 > 高中数学 > 题目详情
15.已知数列{an}满足an+2=an+1+an(n∈N*),a1=a2=1,把数列各项依次除以3所得的余数记为数列{bn},除以4所得的余数记为数列{cn},则b2016+c2016=0.

分析 {an}是斐波那契数列,求得{an}中各项除以3所得余数组成以8为周期的周期数列,各项除以4所得余数组成以6为周期的周期数列,从而可得结论.

解答 解:依题意,该数列为:1,1,2,3,5,8,13,21,34,55,89,144,…
各项依次除以3所得的余数记为数列{bn},则为1,1,2,0,2,2,1,0,1,1,2,0,…,即{cn}中各项除以3所得余数组成以8为周期的周期数列,
而2016=252×8,故b2016=0
除以4所得的余数记为数列{cn},则1,1,2,3,1,0,1,1,2,3,1,0,…即{cn}中各项除以4所得余数组成以6为周期的周期数列,
而2016=336×6,故C2016=0,
故b2016+c2016=0,
故答案为:0.

点评 本题考查了斐波那契数列,以及周期数列,考查了学生的分析问题解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.执行如图的程序框图(n∈N*),则输出的S=(  ) 
A.a+aq+…+aqn-1B.$\frac{{a(1-{q^n})}}{1-q}$C.a+aq+…+aqnD.$\frac{{a(1-{q^{n+1}})}}{1-q}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.执行如图所示的程序框图,若输出的n=7,则输入的整数K的最大值是(  )
A.18B.50C.78D.306

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$为空间三个向量,又$\overrightarrow{a}$,$\overrightarrow{b}$是两个相互垂直的单位向量,向量$\overrightarrow{c}$满足|$\overrightarrow{c}$|=3,$\overrightarrow{c}$$•\overrightarrow{a}$=2,$\overrightarrow{c}$•$\overrightarrow{b}$=1,则对于任意实数x,y,|$\overrightarrow{c}$-x$\overrightarrow{a}$-y$\overrightarrow{b}$|的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.执行如图所示的流程图,则输出的k的值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设P(x,y)满足$\left\{\begin{array}{l}{x≥1}\\{y≥1}\\{x+y≤4}\end{array}\right.$,点A(2,0),B(0,3),若$\overrightarrow{OP}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$,O是坐标原点,则λ+μ的取值范围是(  )
A.[2,4]B.[$\frac{5}{6}$,$\frac{11}{6}$]C.[$\frac{5}{6}$,2]D.[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知复数z(1+i)=2i,则|z|等于$\sqrt{2}$;.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)为一元二次函数,且m,f(m),f(f(m)),f(f(f(m)))成正项等比数列,求证:f(m)=m.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知变量x、y满足的不等式组$\left\{\begin{array}{l}x≥0\\ 2x-y≤0\\ kx-y+1≥0\end{array}\right.$表示的平面区域是一个直角三角形,则实数k=(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.0D.0或-$\frac{1}{2}$

查看答案和解析>>

同步练习册答案