精英家教网 > 高中数学 > 题目详情
7.已知复数z(1+i)=2i,则|z|等于$\sqrt{2}$;.

分析 利用复数的运算法则、模的计算公式即可得出.

解答 解:∵复数z(1+i)=2i,∴z(1+i)(1-i)=2i(1-i),∴2z=2(i+1),可得z=1+i,
∴z=$\sqrt{2}$.
故答案为:$\sqrt{2}$.

点评 本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知向量$\overrightarrow{m}$=(cosx,sinx),$\overrightarrow{n}$=(2$\sqrt{2}$+sinx,2$\sqrt{2}$-cosx),函数f(x)=$\overrightarrow{m}$$•\overrightarrow{n}$,x∈R.
(Ⅰ)求函数f(x)的最大值;
(Ⅱ)若x∈(-$\frac{3π}{2}$,-π)且f(x)=1,求cos(x+$\frac{5π}{12}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知全集U={1,2,3,4,5},集合A={1,2,3},集合B={3,4},则(∁UA)∪B=(  )
A.{4}B.{2,3,4}C.{3,4,5}D.{2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知数列{an}满足an+2=an+1+an(n∈N*),a1=a2=1,把数列各项依次除以3所得的余数记为数列{bn},除以4所得的余数记为数列{cn},则b2016+c2016=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.从3名男同学,2名女同学中任选2人参加体能测试,则选到的2名同学至少有一名女同学的概率是$\frac{7}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知i是虚数单位,若复数z满足z=$\frac{{i}^{3}}{1+i}$,则z的共轭复数$\overline{z}$为(  )
A.$\frac{1+i}{2}$B.$\frac{1-i}{2}$C.$\frac{-1+i}{2}$D.$\frac{-1-i}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,在边长分别为f(x)与g(x)和2π的矩形内有由函数y=sinx的图象和x轴围成的区域(阴影部分),李明同学用随机模拟的方法估算该区域的面积.若在矩形内每次随机产生9000个点,并记录落在该区域内的点的个数.经过多次试验,计算出落在该区域内点的个数平均值为3000个,若π的近似值为3,则该区域的面积约为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.将向量$\overrightarrow{a_1}$=(x1,y1),$\overrightarrow{a_2}$=(x2,y2),…$\overrightarrow{a_n}$=(xn,yn)组成的系列称为向量列{$\overrightarrow{a_n}$},并定义向量列{$\overrightarrow{a_n}$}的前n项和$\overrightarrow{S_n}=\overrightarrow{a_1}+\overrightarrow{a_2}+…+\overrightarrow{a_n}$.如果一个向量列从第二项起,每一项与前一项的差都等于同一个向量,那么称这样的向量列为等差向量列.若向量列{$\overrightarrow{a_n}$}是等差向量列,那么下述四个向量中,与$\overrightarrow{{S_{21}}}$一定平行的向量是(  )
A.$\overrightarrow{{a_{10}}}$B.$\overrightarrow{{a_{11}}}$C.$\overrightarrow{{a_{20}}}$D.$\overrightarrow{{a_{21}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.对于数列{an}与{bn},若对数列{cn}的每一项cn,均有ck=ak或ck=bk,则称数列{cn}是{an}与{bn}的一个“并数列”.
(1)设数列{an}与{bn}的前三项分别为a1=1,a2=3,a3=5,b1=1,b2=2,b3=3,若{cn}是{an}与{bn}一个“并数列”求所有可能的有序数组(c1,c2,c3);
(2)已知数列{an},{cn}均为等差数列,{an}的公差为1,首项为正整数t;{cn}的前10项和为-30,前20项的和为-260,若存在唯一的数列{bn},使得{cn}是{an}与{bn}的一个“并数列”,求t的值所构成的集合.

查看答案和解析>>

同步练习册答案