精英家教网 > 高中数学 > 题目详情

【题目】如图, 为圆的直径在圆 矩形所在的平面和圆所在的平面互相垂直.

1)求证:平面平面

2)求几何体的体积.

【答案】(1)证明见解析;(2) .

【解析】试题分析:

(1)利用面面垂直的性质定理可知,由圆的性质可得平面,最后利用面面垂直的判断定理可得平面平面.

(2)过点将几何体分解为一个三棱锥和一个四棱锥,计算可得四棱锥的体积三棱锥的体积,FG的长度等于边长为1的等边三角形OEF的高,即,据此计算可得几何体的体积是.

试题解析:

1)证明:由平面平面

平面平面,得平面

平面,所以.

又因为为圆的直径,所以

,所以平面.

又因为平面,所以平面平面.

2)过点,因为平面平面

所以平面,所以.

因为平面

所以 .

连接.,且.

为等边三角形,∴.

∴几何体体积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线的焦点为,直线过点且依次交抛物线及圆四点,则的最小值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 为等边三角形,平面平面 的中点

)求证:

)求二面角的余弦值

平面,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点为,上顶点为为坐标原点,椭圆的离心率的面积为.

(1)求椭圆的方程;

(2)设线段的中点为,经过的直线与椭圆交于两点, ,若点关于轴的对称点在直线上,求直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是边长为1的正方形,垂直于底面.

1)求平面与平面所成二面角的大小;

2)设棱的中点为,求异面直线所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,点在抛物线上,直线过点且与抛物线交于两点.

(1)求抛物线的方程及点的坐标

(2)的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数,),以原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)写出曲线的普通方程和曲线的直角坐标方程;

(2)已知点是曲线上一点,若点到曲线的最小距离为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥中,平面平面,且

是等边三角形, .

(1)证明: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列项和为,且.

(1)证明数列是等比数列;

(2)设,求数列的前项和.

查看答案和解析>>

同步练习册答案