精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax2+bx+c(a>0且bc≠0).
(1)若|f(0)|=|f(1)|=|f(-1)|=1,试求f(x)的解析式;
(2)令g(x)=2ax+b,若g(1)=0,又f(x)的图象在x轴上截得的弦的长度为l,且0<|x1-x2|≤2,试确定c-b的符号.
分析:(1)由|f(0)|=|f(1)|=|f(-1)|=1,我们可以构造关于a,b,c的方程,结合二次函数的性质,解方程即可得到函数f(x)的解析式;
(2)联立两个函数的解析式,结合韦达定理,我们可表示出|x1-x2|,结合0<|x1-x2|≤2,及a>0且bc≠0等条件,我们可以构造关于a,b,c的不等式,解不等式即可得到答案.
解答:解:(1)由已知|f(1)|=|f(-1)|,有|a+b+c|=|a-b+c|,(a+b+c)2=(a-b+c)2,可得4b(a+c)=0.
∵bc≠0,∴b≠0.∴a+c=0.
又由a>0有c<0.
∵|c|=1,于是c=-1,则a=1,|b|=1.
∴f(x)=x2±x-1.
(2)g(x)=2ax+b,由g(1)=0有2a+b=0,b<0.
设方程f(x)=0的两根为x1、x2
∴x1+x2=-
b
a
=2,x1x2=
c
a

则|x1-x2|=
(x1+x2)2-4x1x2
=
4-4
c
a

由已知0<|x1-x2|≤2,
∴0≤
c
a
<1.
又∵a>0,bc≠0,
∴c>0.
∴c-b>0.
点评:本题考查的知识点是一元二次不等式的应用,函数解析式的求法,二次函数的性质,根据已知条件,结合二次函数的性质,将已知条件转化为关于a,b,c的方程(或不等式)是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案