分析 (1)将a、b代入函数,根据条件“若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点”建立方程解之即可;
(2)对任意实数b,f(x)恒有两个相异不动点转化成对任意实数b,ax2+(b+1)x+b-1=x恒有两个不等实根,再利用判别式建立a、b的不等关系,最后将b看成变量,转化成关于b的恒成立问题求解即可.
解答 解:(1)当a=1,b=-2时,f(x)=x2-x-3,因为x0为f(x)的不动点,
所以${x_0}^2-{x_0}-3={x_0}$即${x_0}^2-2{x_0}-3=0$解得x0=-1,x0=3,
所以-1和3是f(x)=x2-x-3的不动点,
(2)因为f(x)恒有两个相异的不动点
即方程f(x)=x恒有两个不同的解,即f(x)=ax2+(b+1)x+b-1=x,
即ax2+bx+b-1=0有两个不相等的实根,
所以b2-4a(b-1)>0恒成立,
即对于任意b∈R,b2-4ab+4a>0恒成立,
所以(-4a)2-4(4a)<0⇒a2-a<0,
所以0<a<1,
即a的取值范围为(0,1).
点评 本题主要考查了函数与方程的综合运用,以及恒成立问题的处理,属于中档题.
科目:高中数学 来源: 题型:解答题
| 组号 | 重量分组 | 频数 | 频率 |
| 第1组 | [160,165) | 5 | 0.050 |
| 第2组 | [165,170) | ① | 0.350 |
| 第3组 | [170,175) | 30 | ② |
| 第4组 | [175,180) | 20 | 0.200 |
| 第5组 | [180,185] | 10 | 0.100 |
| 合计 | 100 | 1.00 | |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 215° | B. | 225° | C. | 235° | D. | 245° |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com