精英家教网 > 高中数学 > 题目详情
已知等比数列{an}的公比q=-
1
3
,则
a1+a3+a5+a7
a2+a4+a6+a8
等于(  )
A、-3
B、-
1
3
C、3
D、
1
3
考点:等比数列的性质
专题:等差数列与等比数列
分析:把要求的代数式的分母提取q,约分后可得答案.
解答: 解:∵等比数列{an}的公比q=-
1
3

a1+a3+a5+a7
a2+a4+a6+a8
=
a1+a3+a5+a7
(a1+a3+a5+a7)q
=
1
q
=-3

故选:A.
点评:本题考查了等比数列的性质,是基础的计算题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若a>b>c,则下列不等式一定成立的是(  )
A、
1
a-c
1
b-c
B、
1
a-c
1
b-c
C、
1
ac
1
bc
D、
1
ac
1
bc

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足anan+1an+2an+3=24,且a1=1,a2=2,a3=3,则a1+a2+a3+…+a2013+a2014=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:实数x满足x2-4ax+3a2<0,其中a<0;命题q:实数x满足x2+3x-10>0,且q是p的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:方程
x2
9-2k
+
y2
k
=1
表示焦点在x轴上的椭圆;命题q:方程
x2
2
-
y2
k
=1
表示双曲线,且离心率e∈(
2
3
),若命题p∧q为假命题,p∨q为真命题,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
(1)log2.56.25+lg
1
100
+ln(e
e
)+log2(log216);
(2)解含x的不等式:(
1
4
)x-
3
2x
+2<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在(0,+∞)上的增函数,f(2)=1,f(xy)=f(x)+f(y).
(1)求证:f(x2)=2f(x);
(2)求f(1)的值;
(3)若f(x)+f(x+3)≤2,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x+2y=4(x,y∈R+),则
2
x
+
1
y
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=log0.5(x2-1)的单调递增区间是
 

查看答案和解析>>

同步练习册答案