精英家教网 > 高中数学 > 题目详情
1.求值:
(1)${8^{\frac{2}{3}}}-{({0.5})^{-3}}+{({\frac{1}{{\sqrt{3}}}})^{-2}}×{({\frac{81}{16}})^{-\frac{1}{4}}}$;
(2)$lg5•lg8000+{({lg{2^{\sqrt{3}}}})^2}+{e^{ln1}}+ln({e\sqrt{e}})$.

分析 (1)利用有理数指数幂性质、运算法则求解.
(2)利用对数性质、运算法则求解.

解答 解:(1)${8^{\frac{2}{3}}}-{({0.5})^{-3}}+{({\frac{1}{{\sqrt{3}}}})^{-2}}×{({\frac{81}{16}})^{-\frac{1}{4}}}$
=4-8+2=-2.…(6分)
(2)$lg5•lg8000+{({lg{2^{\sqrt{3}}}})^2}+{e^{ln1}}+ln({e\sqrt{e}})$=$lg5({3+3lg2})+3{({lg2})^2}+1+\frac{3}{2}$
=$3lg5+3lg2({lg5+lg2})+\frac{5}{2}$
=3(lg5+lg2)+$\frac{5}{2}$=$\frac{11}{2}$.…(12分)

点评 本题考查有理数指数幂、对数的化简求值,是基础题,解题时要认真审题,注意有理指数幂、对数的性质及运算法则的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.给出下列关系:①$\frac{1}{2}$∈Z;②$\sqrt{2}$∈Q;③|-3|∈N+;④3.14∈Q;⑤0∈∅,其中正确的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)对任意实数x,y满足f(x)+f(y)=f(x+y)+3,f(3)=6,当x>0时,f(x)>3,那么,当f(a2-a-5)<4时,实数a的取值范围是(-2,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图所示,在正方体ABCD-A1B1C1D1中,直线AB1与直线BD1所成的角的大小为(  )
A.45°B.90°C.60°D.以上答案都不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知长方体ABCD-A1B1C1D1中,AA1=AB=2,若棱AB上存在点P使D1P⊥PC,则棱AD的长的取值范围是0<AD≤1;此时若AD取得最大值时,长方体外接球的表面积为9π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若函数f(2x)的定义域为(-2,5),则函数f(x-2)的定义域为(  )
A.(-3,$\frac{1}{2}$)B.(-2,12)C.(1,$\frac{9}{2}$)D.(-4,10)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知a=log${\;}_{\frac{1}{3}}$2,b=2${\;}^{-\frac{1}{3}}$,c=ln3,则(  )
A.a>b>cB.b>a>cC.c>b>aD.c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,网格上小正方形的边长为1,粗线画出的是某空间几何体的三视图,则该几何体的棱长不可能为(  )
A.$4\sqrt{2}$B.$\sqrt{41}$C.$3\sqrt{2}$D.$\sqrt{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点,
(1)求证:AC⊥BC1
(2)求证:AC1∥平面CDB1

查看答案和解析>>

同步练习册答案