精英家教网 > 高中数学 > 题目详情
14.函数 f(x)=(x2-2x)ex的图象大致是(  )
A.B.C.D.

分析 用函数图象的取值,函数的零点,以及利用导数判断函数的图象.

解答 解:由f(x)=0,解得x2-2x=0,即x=0或x=2,
∴函数f(x)有两个零点,∴A,C不正确.
∴f'(x)=(x2-2)ex
由f'(x)=(x2-2)ex>0,解得x>$\sqrt{2}$或x<-$\sqrt{2}$.
由f'(x)=(x2-2)ex<0,解得,-$\sqrt{2}$<x<$\sqrt{2}$
即x=-$\sqrt{2}$是函数的一个极大值点,
∴D不成立,排除D.
故选:B

点评 本题主要考查函数图象的识别和判断,充分利用函数的性质,本题使用特殊值法是判断的关键,本题的难度比较大,综合性较强.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.设f(x)=(1+x)6(1-x)5,则导函数f′(x)中x2的系数是(  )
A.0B.15C.12D.-15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设△ABC的三边a、b、c成等差数列,则tan$\frac{A}{2}$tan$\frac{C}{2}$的值(  )
A.3B.$\frac{1}{3}$C.$\sqrt{3}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,角A、B、C所对的边分别为a、b、c,已知sin(A+$\frac{π}{6}$)+2cos(B+C)=0,
(1)求A的大小;   
(2)若a=6,求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.以下5个命题:
①对于相关系r|r|越接近1,则线性相关程度越强;
②空间直角坐标系中,(-2,1,9)关于x轴对称的点的坐标(-2,1,9);
③某人连续投篮投3次,设事件A:至少有一个命中,事件B:都命中,那么事件A与事件B是互斥且不对立的事件;
④推理“半径为r圆的面积S=πr2,则单位圆的面S=π”是类比推理;
⑤定义运算$[\begin{array}{l}{a}&{c}\\{b}&{d}\end{array}]$$[\begin{array}{l}{x}\\{y}\end{array}]$=$[\begin{array}{l}{ax+cy}\\{bx+dy}\end{array}]$,称$[\begin{array}{l}{x′}\\{y′}\end{array}]$=$[\begin{array}{l}{a}&{c}\\{b}&{d}\end{array}]$$[\begin{array}{l}{x}\\{y}\end{array}]$ 为将点(x,y)映到点(x′,y′)的一次变换.若$[\begin{array}{l}{x′}\\{y′}\end{array}]$=$[\begin{array}{l}{2}&{-1}\\{p}&{q}\end{array}]$$[\begin{array}{l}{x}\\{y}\end{array}]$把直线y=x上的各点映到这点本身,而把直y=3x上的各点映到这点关于原点对称的点,p=3,q=-2;
其中的真命题是①⑤.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在四棱锥P-ABCD中(如图),底面ABCD是直角梯形,M为PC中点,且AB∥DC,又∠ABC=45°,DC=1,AB=2,PA⊥平面ABCD,PA=1.
(Ⅰ)求证:CD∥平面MAB;
(Ⅱ)求三棱锥M-PAD的体;
(Ⅲ)若点K线段PA上,试判断平面KBC和平面PAC的位置关系,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.小明想利用树影测量他家有房子旁的一棵树的高度,但由于地形的原因,树的影子总有一部分落在墙上,某时刻他测得树留在地面部分的影子长为1.4米,留在墙部分的影高为1.2米,同时,他又测得院子中一个直径为1.2米的石球的影子长(球与地面的接触点和地面上阴影边缘的最大距离)为0.8米,根据以上信息,可求得这棵树的高度是3.3米.(太阳光线可看作为平行光线)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设变量x,y满足约束条件$\left\{\begin{array}{l}{y≤2x}\\{x+2y≤2}\\{x≤2}\end{array}\right.$,则z=2x+y的最大值为(  )
A.8B.6C.4D.$\frac{8}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在等差数列{an}中,Sn为数列{an}的前n项和,若Sn=a,S2n=b,则S3n=3b-3a.

查看答案和解析>>

同步练习册答案