精英家教网 > 高中数学 > 题目详情
19.已知数列{an}的前n项和Sn=an+1-1,a1=1,(n∈N*).数列{bn}满足b1=1,bn+1=bn+an+1(n∈N*).
(1)求数列{an}的通项公式;
(2)求数列{bn}的通项公式;
(3)若cn=an•log2(bn+1),求数列{cn}的前n项和Tn

分析 (1)由数列的前n项和推陈出新导出$\frac{{a}_{n+1}}{{a}_{n}}$=2,从而数列{an}是首项是1,公比为2的等差数列,由此能求出an
(2)推导出bn-bn-1=2n-1,由此利用累加法能求出bn
(2)由cn=an•log2(bn+1)=${2}^{n-1}•lo{g}_{2}{2}^{n}$=n•2n-1,利用错位相减法能求出数列{cn}的前n项和Tn

解答 解:(1)∵数列的前n项和Sn=an+1-1,a1=1,(n∈N*).
∴an=Sn-Sn-1=(an+1-1)-(an-1),
2an=an+1
∴$\frac{{a}_{n+1}}{{a}_{n}}$=2,
∴数列{an}是首项是1,公比为2的等差数列,
∴an=1×2n-1=2n-1
(2)∵数列{bn}满足b1=1,bn+1=bn+an+1(n∈N*),
bn-bn-1=2n-1
∴bn=b1+b2+b3+…+bn
=1+2+22+…+2n-1
=$\frac{1-{2}^{n}}{1-2}$=2n-1.
(2)∵cn=an•log2(bn+1)=${2}^{n-1}•lo{g}_{2}{2}^{n}$=n•2n-1
∴数列{cn}的前n项和:
Tn=1×20+2×2+3×22+…+n×2n-1,①
2Tn=1×2+2×22+3×33+…+n×2n,②
①-②,得:-Tn=1+2+22+…+2n-1-n×2n
=$\frac{1-{2}^{n}}{1-2}$-n×2n-1
=2n-1-n×2n.,
∴Tn=(n-1)×2n+1.

点评 本题考查数列的通项公式的求法,考查数列的前n项的求法,是基础题,解题时要认真审题,注意等差数列\错位相减法的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.满足a=4,b=3和A=45°的△ABC的个数为(  )
A.0个B.1个C.2个D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若角θ满足sinθ<0,tanθ<0,则角θ是(  )
A.第一象限角或第二象限角B.第二象限角或第四象限角
C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=|x2+ax+b|在区间[0,c]内的最大值为M(a,b∈R,c>0位常数)且存在实数a,b,使得M取最小值2,则a+b+c=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=Asin(ωx+φ)(A,ω>0,|φ|<$\frac{π}{2}$)的图象如图所示,则tanφ=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某同学用“五点法”画函数f(x)=Asin(ωx+φ),(ω>0,|φ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入了部分数据,如下表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x$\frac{π}{3}$$\frac{5π}{6}$
f(x)=Asin(ωx+φ),05-50
(1)请将上表数据补充完整,并直接写出函数f(x)的解析式;
(2)将y=f(x)图象上所有点向左平移动$\frac{π}{6}$个单位长度,得到y=g(x)图象,求y=g(x),x∈(-$\frac{π}{4}$,$\frac{π}{4}$)的单调增区间和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知$\overrightarrow a$=(cosα,sinα),$\overrightarrow b$=(cosβ,sinβ),(0<β<α<π).
(1)若$|{\overrightarrow a+\overrightarrow b}|=\sqrt{2}$,求证:$\overrightarrow a⊥\overrightarrow b$;
(2)设$\overrightarrow c=({0,1})$,若$\overrightarrow a+\overrightarrow b=\overrightarrow c$,求α,β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在边长为2的正三角形ABC中,设$\overrightarrow{BC}$=2$\overrightarrow{BD}$,$\overrightarrow{CA}$=3$\overrightarrow{CE}$,则$\overrightarrow{AD}$•$\overrightarrow{BE}$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.抛物线y=$\frac{1}{8}$x2的准线方程为(  )
A.$y=-\frac{1}{32}$B.y=-2C.x=-2D.x=-$\frac{1}{32}$

查看答案和解析>>

同步练习册答案