精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=|x2+ax+b|在区间[0,c]内的最大值为M(a,b∈R,c>0位常数)且存在实数a,b,使得M取最小值2,则a+b+c=2.

分析 函数y=x2+ax+b是二次函数,可得函数f(x)=|x2+ax+b|在区间[0,c]内的最大值在端点处或x=-$\frac{a}{2}$处取得.
分别讨论即可得到a+c=0,b=2,可得a+b+c=2.

解答 解:函数y=x2+ax+b是二次函数,
∴函数f(x)=|x2+ax+b|在区间[0,c]内的最大值为M在端点处或x=-$\frac{a}{2}$处取得.
若在x=0处取得,则b=±2,
若在x=-$\frac{a}{2}$处取得,则$|b-\frac{{a}^{2}}{4}|=2$,
若在x=c处取得,则|c2+ac+b|=2.
若b=2,则顶点处的函数值不为2,应为0,符合要求,
若b=-2则顶点处的函数值的绝对值大于2,不成立.
由此推断b=$\frac{{a}^{2}}{4}$,即有b=2,则a+c=0,
可得a+b+c=2.
故答案为:2.

点评 本题考查二次函数的最值的求法,注意讨论对称轴和区间的关系,考查化简整理的运算能力和推理能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.若存在两个正实数m、n,使得等式a(lnn-lnm)(4em-2n)=3m成立(其中e为自然对数的底数),则实数a的取值范围是(  )
A.(-∞,0)B.(0,$\frac{3}{2e}$]C.[$\frac{3}{2e}$,+∞)D.(-∞,0)∪[$\frac{3}{2e}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,内角A、B、C所对应的边分别为a、b、c,若bsinA-$\sqrt{3}$acosB=0,则A+C=120°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列曲线中,在x=1处切线的倾斜角为$\frac{3π}{4}$的是(  )
A.y=x2-$\frac{3}{x}$B.y=xlnxC.y=x3-2x2D.y=ex-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列函数为奇函数的是(  )
A.y=x2B.y=cosxC.y=sinxD.y=2x+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数y=Asin(ωx+ϕ)(A>0,ω>0,|φ|<$\frac{π}{2}$),在同一周期内,$x=\frac{π}{9}$时取得最大值$\frac{1}{2}$,$x=\frac{4}{9}π$时取得最小值-$\frac{1}{2}$,则该函数解析式为(  )
A.$y=2sin(\frac{x}{3}-\frac{π}{6})$B.$y=\frac{1}{2}sin(3x+\frac{π}{6})$C.$y=\frac{1}{2}sin(3x-\frac{π}{6})$D.$y=\frac{1}{2}sin(\frac{x}{3}-\frac{π}{6})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}的前n项和Sn=an+1-1,a1=1,(n∈N*).数列{bn}满足b1=1,bn+1=bn+an+1(n∈N*).
(1)求数列{an}的通项公式;
(2)求数列{bn}的通项公式;
(3)若cn=an•log2(bn+1),求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知甲猜谜猜对的概率为$\frac{4}{5}$,乙猜谜猜对的概率为$\frac{2}{3}$.若甲、乙二人各猜一次谜,则恰有一人猜对的概率为$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设数列{an}中a1=2,an+1=2an,Sn为数列{an}的前n项和,若Sn=126,则n=(  )
A.4B.9C.6D.12

查看答案和解析>>

同步练习册答案