精英家教网 > 高中数学 > 题目详情
17.设数列{an}中a1=2,an+1=2an,Sn为数列{an}的前n项和,若Sn=126,则n=(  )
A.4B.9C.6D.12

分析 由题意可得数列{an}是首项为2,公比q=2的等比数列,运用等比数列的求和公式,解方程即可得到所求n的值.

解答 解:数列{an}中a1=2,an+1=2an
可得数列{an}是首项为2,公比q=2的等比数列,
可得Sn=$\frac{{a}_{1}(1-{q}^{n})}{1-q}$=$\frac{2(1-{2}^{n})}{1-2}$=126,
即有2n=64,解得n=6,
故选:C.

点评 本题考查等比数列的定义和求和公式的运用,考查方程思想和运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=|x2+ax+b|在区间[0,c]内的最大值为M(a,b∈R,c>0位常数)且存在实数a,b,使得M取最小值2,则a+b+c=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在边长为2的正三角形ABC中,设$\overrightarrow{BC}$=2$\overrightarrow{BD}$,$\overrightarrow{CA}$=3$\overrightarrow{CE}$,则$\overrightarrow{AD}$•$\overrightarrow{BE}$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.命题“?x≠0,x2>0”的否定是(  )
A.?x≠0,x2≤0B.?x=0,x2≤0C.?x0≠0,${x_0}^2≤0$D.?x0=0,${x_0}^2≤0$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=ax3-1在(-∞,+∞)上是减函数,则实数a的取值范围为(-∞,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设{an}(n∈N*)是各项为正数的等比数列,q是其公比,Tn是其前n项的积,且T5<T6,T6=T7>T8,则下列结论错误的是(  )
A.0<q<1B.a7=1
C.T6与T7均为Tn的最大值D.T9>T5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.抛物线y=$\frac{1}{8}$x2的准线方程为(  )
A.$y=-\frac{1}{32}$B.y=-2C.x=-2D.x=-$\frac{1}{32}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若将函数y=sinx+$\sqrt{3}$cosx的图象向右平移φ(φ>0)个单位长度得到函数y=sinx-$\sqrt{3}$cosx的图象,则φ的最小值为(  )
A.$\frac{π}{6}$B.$\frac{π}{2}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知抛物线y2=$\frac{1}{8}$x,则它的准线方程为(  )
A.y=-2B.y=2C.x=-$\frac{1}{32}$D.x=$\frac{1}{32}$

查看答案和解析>>

同步练习册答案